
S: a Scripting Language for
High-Performance RESTful Web Services

Daniele Bonetta Achille Peternier Cesare Pautasso Walter Binder

Faculty of Informatics, University of Lugano – USI
Lugano, Switzerland

{name.surname}@usi.ch

Abstract

There is an urgent need for novel programming abstrac-
tions to leverage the parallelism in modern multicore ma-
chines. We introduce S, a new domain-specific language tar-
geting the server-side scripting of high-performance RESTful
Web services. S promotes an innovative programming model
based on explicit (control-flow) and implicit (process-level)
parallelism control, allowing the service developer to spec-
ify which portions of the control-flow should be executed in
parallel. For each service, the choice of the best level of par-
allelism is left to the runtime system. We assess performance
and scalability by implementing two non-trivial composite
Web services in S. Experiments show that S-based Web ser-
vices can handle thousands of concurrent client requests on
a modern multicore machine.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming

General Terms Languages, Performance

Keywords RESTful Web services, Multicores, Scalable ser-
vice execution

1. Introduction

Even if modern server infrastructures for hosting Web ser-
vices feature highly parallel multicore processors, most ex-
isting software and programming languages make it a chal-
lenge to fully benefit from the power of such hardware
platforms. Given the intrinsically parallel nature of service-
based applications, the opportunity exists to design service-
oriented architectures which can take advantage of the asyn-
chronous, message-based interactions between independent
(i.e., share-nothing) services to make efficient usage of mul-
ticore hardware.

In this paper we describe the design of a new language,
called S, which targets the domain of RESTful Web ser-
vice [10] development and composition. We find that state-
less interactions among RESTful Web services and the ex-
plicit management of their state is very useful to identify

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
Copyright © 2012 ACM 978-1-4503-1160-1/12/02. . . $10.00

which parts of a service-oriented architecture can be paral-
lelized.

Even if it is possible to design scalable systems using
any language, we believe that embedding specific constraints
in the design of a language can make the corresponding
guidance more directly available to developers. Thus, we
also discuss our novel implicit state-oriented programming
model, which has been embedded in the design of the S
language.

S features native support for architectural-level abstrac-
tions, such as services and resources, and allows developers
to script service behavior in terms of request handlers associ-
ated with the uniform interface of each resource. The state of
resources is explicitly marked so that the compiler can stat-
ically distinguish the functional behavior from the stateful
elements and provide the runtime with enough information
such that the correct parallelization strategy can be applied.
Likewise, developers do not have to worry about synchro-
nization issues due to concurrent client requests as these are
dealt with by the runtime system. The S compiler currently
includes a backend targeting the JavaScript language and
makes use of a runtime based on Node.js [19]. It features
automatic code de-synchronization (as Node.js is a single-
process, asynchronous server) as well as out-of-order parallel
execution. As we demonstrate with non-trivial case studies,
the S runtime can transparently and efficiently parallelize the
execution of RESTful Web services across multiple CPU cores
while serving thousands of concurrent clients.

This paper makes the following contributions: it intro-
duces the design and the parallel programming model of the
S language. It describes its compiler, which detects which
portions of code can be executed in parallel and automati-
cally optimizes them for concurrent execution. It presents the
main architectural patterns used at runtime to parallelize the
execution of the S language featuring dynamic replication of
services and automatic load balancing.

The rest of this paper is structured as follows: in Sec-
tion 2 we provide the necessary background to understand
the characteristics of the HTTP protocol that we leverage in
the design of the S language, as described in Section 3. Sec-
tion 4 presents the S language syntax. In Section 5 we explain
how the language is compiled into server-side JavaScript to
be executed on the S runtime, described in Section 6. Sec-
tions 7 and 8 provide an evaluation of the S runtime system.
Section 9 presents related work, and Section 10 concludes
this paper.

2. Background

2.1 RESTful Web Services and the HTTP Protocol

RESTful services are Web services which make full usage of
the HTTP protocol [10]. HTTP is the client/server protocol
at the core of the World Wide Web [1]. It is based on the no-
tions of globally addressable resource (any element published
by the server that the client can interact with), stateless in-
teractions (no state should be shared between clients and the
server after a request has completed so that servers can treat
every request independently from the previous ones), and
uniform interfaces (the fixed and well-defined set of possible
“actions” that the client can perform on any resource). The
uniform interface of HTTP consists of the so-called HTTP
methods. The main methods are GET, PUT, DELETE, and
POST, which are used to read, create/modify, delete, or ac-
cess resources. A key aspect of the HTTP protocol is that any
method has a precise effect on the state of the receiving re-
source. GET requests, for instance, are not expected to alter
the state of the resource they are applied to. Therefore, mul-
tiple GET requests can be safely processed in parallel. Like-
wise, the value (or representation) of resources fetched us-
ing GET methods can be cached. PUT and DELETE meth-
ods, on the other hand, are idempotent methods: no matter
how many times the same PUT/DELETE request will be is-
sued on the same resource, the result will be identical. As a
consequence, such requests can be processed by the server in
a non-deterministic order and can be retried in case of fail-
ure as many times as needed. Conversely, POST methods do
not have any property, thus, POST requests must be executed
exactly once. Resources can also be retrieved using different
representation formats (e.g., HTML, plain text, PDF, JSON,
XML). We do not further discuss this aspect as it does not
affect parallelism, which is the main focus of this paper.

2.2 JavaScript for Server-Side Development

JavaScript is the most widely used language for client-side
development of Web applications. Its distinguishing features
are its flexibility, its prototype-based object orientation, its
functional nature, as well as its HTML interoperability based
on the Document-Object Model (DOM). Despite of being
perceived as an inefficient language (like many other dy-
namically typed languages), JavaScript code is nowadays
executed very efficiently. In fact, its wide distribution has
spawned many engineering efforts directed at the implemen-
tation of high-performance JavaScript virtual machines, such
as Google’s V8, Safari’s Webkit, and Firefox’s SpiderMonkey.
Given its origins as a scripting language embedded in the
Web Browser, JavaScript has not been originally designed to
express process-level parallelism. It has only been recently
extended to offer support for parallel computations struc-
tured according to the master/worker pattern with HTML5
WebWorkers [13].

The increasingly good performance offered by JavaScript
virtual machines has motivated the adoption of JavaScript
also as a server-side scripting language. Notable in this field
is Node.js: a server-side JavaScript framework running on
top of Google’s V8 which can be used for the development
of I/O-bound networking-intensive applications. Node.js
features an asynchronous event-driven runtime based on a
single-process event-based architecture inspired by the one
of Python’s Twisted [9], which enables it to handle thou-
sands of concurrent requests on a single V8 instance. Given
its single-threaded design (which helps to deal with many
concurrency issues), Node.js can exploit modern multicore

machines only with approaches based on the master/worker
pattern. Also, its asynchronous, event-driven programming
model could result to be verbose in complex service devel-
opment. Conversely, having JavaScript on the server-side
clearly represents a great advantage for the end-to-end de-
velopment of service-oriented applications. Thus, we have
chosen to base the design of the S language on JavaScript
and add the missing features (i.e., parallelism and modular-
ization in terms of services and resources), as described in
the following sections.

3. The Design of the S Language

S is an extension of the JavaScript programming language
targeting the design of service-oriented architectures, with
particular focus on RESTful Web service development and
composition. S extends JavaScript with new features for ser-
vice scripting, such as synchronous interaction primitives,
out-of-order parallel execution of I/O-bound tasks, as well
as declarative support for publishing, consuming, and com-
posing REST resources. The aim of the language is to enable
the development of high-performance RESTful Web services.
The main design drivers are as follows:

High Abstraction Level. The language introduces novel
primitives such as services, resources, and request handlers to
the JavaScript language. These abstractions address the lack
of modularity constructs in JavaScript and provide scoping
and lifecycle semantics specific to RESTful Web services. The
goal is to let the developer declare the structural decompo-
sition of a service-oriented architecture so that the compiler
and the runtime have enough information to derive which
services and which resources can be replicated for scalability
and parallelization purposes.

Simple Parallel Programming Model. Defining a program-
ming model to let the developer exploit the parallelism avail-
able in modern hardware represents a major challenge. S em-
braces a simple yet powerful programming model with the
main aim of easing the parallelization of services. In this way,
the developer can focus on the semantics of the interaction
among different services, and delegate the parallelism man-
agement mostly to the runtime.

JavaScript Support. The language is designed to be JavaScript
compatible. This has the notable advantage of bringing all
the features of a client-side language (for instance, the DOM
and JSON support) to a server-side language, without sacri-
ficing performance (thanks to the Node.js-based runtime).

3.1 The Programming Model of S

The programming model of S is based on two main compo-
nents: the deterministic control of any state change during
the execution of the service and a simple yet powerful ap-
proach to parallelism.

Implicit State-oriented Programming. One of the major
sources of complexity and performance degradation for par-
allel applications is the management of shared state. S solves
this issue by forcing the developer to specify which opera-
tions will alter the state, and by decoupling the management
of the state from the access to shared state. In S, different
services do not share state by design. Resources within the
same service may share state. The developer is thus forced to
explicitly describe any possible interaction among services
in terms of HTTP methods. In this way, the semantics of
any HTTP method is enforced. Therefore, resources imple-
menting the GET method will not be allowed to alter any

private or shared state, while resources implementing the
POST method will be provided with complete access to both
shared and private state. This clear division of state visibility,
together with a clear separation of stateless and stateful op-
erations, enables the compiler to explicitly control how the
state of a RESTful Web service is accessed and manipulated.

Parallel Programming Model. S approaches parallel pro-
gramming with a separation between what can be paral-
lelized by the developer within the behavior of a specific re-
quest handler and what can be parallelized by the runtime to
handle multiple concurrent requests.

The goal is to let developers write the service logic assum-
ing that all the state will be and remain consistent no mat-
ter how many concurrent clients access the service. Further-
more, the developer does not have any control over the de-
gree of parallelism used to execute the service as the runtime
autonomously decides how many parallel processes should
be allocated to run each service. In more detail, the run-
time makes use of the implicit state-oriented programming
assumptions to infer which parallelization strategy to ap-
ply. Therefore, read-only requests can be easily parallelized,
while update-requests need to be serialized. Likewise, state-
less services can be replicated, while stateful services can be
replicated but their state needs to be kept synchronized by
the runtime. The necessary locks and synchronization mech-
anisms are entirely managed by the runtime.

Conversely, developers can focus their parallelization ef-
forts on reducing the overall response time of a request han-
dler and on speeding up the interaction with external ser-
vices. Such optimizations make use of two common high-
level control-flow parallelism constructs which help to over-
lap the execution of multiple I/O operations. As we will
show, these out-of-order parallelism constructs do not re-
quire the developer to reason in terms of threads or parallel
processes, since the parallel execution of the instructions of
the request handler is also managed by the runtime.

4. The S Service Scripting Language

4.1 Syntax

The S language is informally introduced with the exam-
ples in this section. The syntax of S is an extension of the
JavaScript syntax; thus, any valid JavaScript statement can
be used in S, with some limitations introduced to comply
with the implicit state-oriented programming model. The
JavaScript syntax has been extended to enable explicit par-
allelism statements such as out-of-order execution of I/O-
bound operations, and explicit interaction with external
HTTP resources.

The main entity of the language is the service. Services
have local scoping, which means that two different services
cannot share any global variable. Instead, since each service
entity corresponds to an independently managed Web ser-
vice at runtime, two service entities can communicate via
HTTP.

Each service statement can declare one or more re-
sources with the corresponding request handlers. Request
handlers represent the event-driven entry point for program-
ming the Web service behavior. Any request to the resources
associated with a service is processed by a specific handler,
defined using the on statement. Request handlers can react to
any of the HTTP methods (such as GET, PUT, DELETE, and
POST), and are associated with a unique resource identifier,
specified with the res keyword. Services can have multi-
ple request handlers. Following our state-oriented program-

// To be invoked with:

// GET /data

// PUT /data?value='...'

1 service helloWorld {

2 state shared = 'World'

3 res '/data' on GET { respond 'Hello ' + shared }

4 res '/data' on PUT { shared = query.value }

5 }

Listing 1. Simple stateful service in S.

ming model, the scoping of handlers is also local: variables
declared within the scope of a handler cannot be accessed
from another request handler.

Stateless (or purely functional) handlers can be associ-
ated with read-only GET methods. This implies that any
JavaScript function invoked within GET request-handlers
must be side-effects free. Since the other HTTP methods
could alter the state of resources, the language supports the
implementation of stateful request handlers in the follow-
ing way. Request handlers sharing the same resource name
(i.e., the same URL) with the need of a shared state can de-
clare special static variables, identified by the state key-
word. Such variables do not lose their state once the request
handler has been invoked, and have their visibility limited
within the scope of the declaring handlers.

State variables declared within an on construct are only
addressable within that request handler, while state variables
declared within the scope of a service block (or a res block
with multiple on blocks) are accessible to request handlers
sharing the same URL path. No state can be shared among
different URL paths.

Handlers accessing the shared state do not have to imple-
ment any synchronization mechanism, and the consistency
of the shared state is guaranteed by the runtime.

Finally, according to the HTTP specification, HTTP POST
methods can cause the creation of new resources within
the service. The language supports the creation of new re-
sources at runtime by embedding nested resource declara-
tions within request handlers. Such nested resources will
be instantiated once the execution reaches their declaration
point and will remain available to clients as long as they are
not deleted.

4.2 A Simple Stateful Service

A simple Web service written in S is shown in Listing 1. The
code corresponds to a simple “Hello World” service with a
shared state (shared) and two request handlers: on GET

and on PUT. When receiving HTTP GET requests (on the
/data URL), the corresponding handler accesses the shared
state and responds with the “Hello World” string. Since the
GET method is idempotent and safe, the language allows
GET handlers neither to modify any shared state, nor to
declare any local state variable. This enables the runtime
to execute multiple GET request handlers in parallel. The
runtime system (and not the developer) is responsible for
managing synchronization upon access to the shared state,
and no explicit locking is required.

The service also implements the HTTP PUT request han-
dler to modify the state of a resource. When receiving a
PUT request (to the full path specified through the res key-
word, e.g., /data?value=’universe’), the value stored
in the shared state is altered. Due to the stateful nature of
this request handler, which implies that the state shared

will change for every new PUT request, the runtime system

// To be invoked with:

// GET /search?q=...

1 service proxy {

2 res '/search' on GET {

3 res g = 'http://google.ch/search?q=@'

4 if(query.q)

5 respond g.get(query.q)

6 else

7 respond 'Invalid query'

8 }

9 }

Listing 2. Simple proxy service.

cannot execute multiple PUT handlers in parallel, therefore,
requests of this class are processed sequentially (fairness is
not guaranteed). Also, concurrent GET requests cannot be
processed consistently while a PUT handler is altering the
shared state. The runtime system is therefore responsible for
managing the parallel execution of GET handlers, that will
answer with an outdated version of the shared state, and for
updating the version of the state once its value will have been
modified. The implicit locking runtime mechanism is aware
of the actual state of the data elements that are shared. Thus,
two different PUT handlers operating on two different states
will be executed in parallel with no serialization.

In the previous example, the PUT handler uses a local ob-
ject called query. This is a special object automatically cre-
ated and managed by the runtime, containing all the infor-
mation relative to the incoming HTTP request. The object is
generated for each new request and its visibility is limited to
one handler body scope. S provides another object with simi-
lar purpose, called response, managing every aspect of the
response (e.g., HTTP headers, status codes, etc.).

4.3 RESTful Service Composition and Dynamic Nested
Resources

Server-side applications often need to interact with exter-
nal services, becoming a composition of existing services ex-
posed as a new service. In S, the resources of external services
are first-class entities, also defined through the res keyword.

The code of Listing 2 describes a proxy service receiving
an input value (q) to be forwarded to another RESTful Web
service (the Google search engine). In the code, g is an exter-
nal resource managed by an external Web service. To support
a complete binding between the URL addressing the external
service and the corresponding entity in S, the resource can be
declared using one or more @ placeholders. In the example,
this solution allows mapping the first argument of g.get()
to the first parameter of the URL’s query (i.e.,q). When multi-
ple parameters are expected, multiple @ symbols can be used.

Having external resources as first-order entities makes the
composition of external services straightforward. The exam-
ple in Listing 3 presents a meta-search service which com-
poses two popular search engines (Google and Microsoft
Bing). As opposed to returning the results of the search as
a response to the request (as done in the example in List-
ing 2), the code associates the result with a dynamically cre-
ated resource (/total/{id}) and the client is redirected to
it. To do so, the client invokes the server like in the previ-
ous examples, but instead of receiving a direct response, it
receives an HTTP 302 code (redirect) pointing to the newly
created resource containing the combined results from the
two searches, which can be read using a GET request.

// To be invoked with:

// POST /search?q=...

// GET /total/{id}

1 service composition {

2 res '/search' on POST {

3 function combine(a,b) { ... }

4 state id = 0; id++

5 res g = 'http://google.ch/search?q=@'

6 res b = 'http://bing.com/search?q=@'

7 var total =

combine(g.get(query.q),b.get(query.q))

8 res '/total/'+id {

9 on GET { respond total }

10 }

11 respond { 302 : { Location : '/total/'+id }}

12 }

13 }

Listing 3. Service composition in S.

This example also shows other interesting aspects. First, it
uses a local state variable, called id. As described in the pre-
vious section, state variables can be used to manage a per-
sistent state in request handlers that do not have to be idem-
potent. This is the case of the POST method, which is used
to create new resources according to the HTTP specification.
The semantics of state variables is straightforward: when de-
clared, they can be initialized with a given value (id = 0,
in our example). Successive invocations of the same request
handler will ignore the initialization. In this way, the first
time the on POST handler is invoked the state variable is ini-
tialized to zero and incremented. At the second invocation,
the state variable has a value of 1 that is incremented as a re-
sult of the id++ operation, ensuring that a unique identifier
for the newly created resource (line 8) is assigned.

Another relevant feature shown in the example are nested
resources. A new resource is created using the res keyword.
The resource is created within the scope of the resource han-
dler, but with an independent URL path. The new resource
is declared specifying the path it will refer to (in our exam-
ple, a string composed of /total/ plus the unique identifier
managed through the state variable) and one or more request
handlers for the new resource. The scoping strategy adopted
for nested resources declaration is the following: the new
nested resource is created with a snapshot of all the global
and local variables accessible within the event handler con-
struct at the moment of its creation. According to our exam-
ple, for instance, the new nested resource /total is allowed
to access the total variable. Thus, when the new resource is
accessed by a client, it responds with the value of total at
the moment of its creation.

4.4 Explicit Control-Flow Parallelism Constructs

Service composition is a key feature of S. However, the in-
vocation of multiple independent services is an I/O-bound
operation that usually implies non-negligible latency. S al-
lows speeding up service composition by performing I/O-
bound operations in parallel. To this end, the language ex-
ploits an out-of-order parallelism model through the par

and the pfor constructs.
Every set of instructions included in a par block is evalu-

ated with respect to its data dependencies and control-flow.
Any set of instructions with no such dependencies is exe-
cuted in parallel, while the others wait for their data depen-
dencies to be satisfied. This approach preserves the data-flow
semantics of the original code, while introducing a partial

// To be invoked with:

// GET /search?q=...

1 service helloPar {

2 res '/search' on GET {

3 function combine(a,b) { ... }

4 par {

5 res g = 'http://google.ch/search?q=@'

6 res b = 'http://bing.com/search?q=@'

7 respond combine(g.get(query.q),

b.get(query.q))

8 }

9 }

10 }

Listing 4. Usage of the par construct in S.

control-flow ordering which enables the compiler to sched-
ule independent I/O-bound operations to be processed con-
currently.

In addition to this construct, the pfor construct enables
the parallel execution of code over multiple elements of one
same data collection. In this case, the compiler checks that
no data dependency is present among the different iterations
and, if possible, executes the body of the loop in parallel
for any element of the collection. Finally, par constructs can
be nested into pfor constructs to further increase the code
parallelization.

Listing 4 shows an example service using the par con-
struct. This service is a different version of the example al-
ready discussed in Listing 3. The example shows how easy it
is to parallelize the block of instructions performing the in-
vocation of external services. The S compiler automatically
identifies that the statements at lines 5 and 6 can be executed
in parallel, and performs the two operations concurrently,
waiting for both to complete before executing the next state-
ment at line 7. Function calls are considered as field accesses,
which means that the body of the combine function will not
be parallelized. Also, functions are assumed to be side-effects
free.

5. Compile-time Support

The result of the compilation process of an S program is a set
of JavaScript source files. Each of these source files is passed
to the S runtime which binds the compilation output to a set
of parallel processes supporting the execution of implicit and
explicit parallel operations.

5.1 Synchronous to Asynchronous Event-Driven
Compilation

Any resource-related operation (i.e., any valid HTTP ser-
vice invocation) is coded as a synchronous operation in S.
This helps keeping the source code readable, and does not
require the developer to write every service invocation as
a set of complex nested callbacks, as it would be required
when done in plain JavaScript. However, to fully exploit the
benefits of the event-driven V8 runtime offered by Node.js,
the JavaScript executable code generated by the compiler
should be event-based, thus asynchronous. To address this
issue, and to support synchronous service invocations in an
asynchronous event-based runtime environment, the com-
piler uses the following de-synchronization strategy. While
traversing the S Abstract Syntax Tree, the compiler performs
these rewriting operations:

1) Each control-flow block performing I/O operations (e.g.,
constructs such as if, for, etc.) is compiled to a separate

JavaScript function. JavaScript has static scoping: the scoping
of any variable is preserved declaring all the global variables
in an external block which will include all the inner levels.

2) Blocks containing an I/O operation are subdivided into
two equivalent blocks: the first contains a runtime system
call to trigger the beginning of the I/O operation. The latter
contains an event handler that recovers the execution of the
resource invocation when the I/O operation completes. The
tree rewriting is done recursively (i.e., blocks with more than
one I/O operation are subdivided into as many blocks as
needed). Finally, each of the rewritten blocks is compiled into
an independent JavaScript function.

3) To preserve the original Control-Flow Graph (CFG) topol-
ogy, all the compiled function blocks are enriched with an
event notification mechanism. The runtime allows manag-
ing the asynchronous execution of any function associated
with a specific event. The compiler appends an emit() run-
time call at the end of each block. In this way, when a block
completes its execution, the runtime is notified and can pass
control to the next blocks.

4) The compiler computes a possible correct sequence of
function calls triggered by event notifications (according to
the CFG of the input code). These are mapped to invocations
of another runtime component, called scheduler. Thanks
to this component, the control-flow of the service can be
driven according to specific events using a callback mech-
anism. By calling the runtime method execOn(event,

function), the runtime can tie the execution of a specific
function as the consequence of a specific event. The compiler
exploits this mechanism to reconstruct the correct control-
flow of a request handler.

Overall, the CFG is converted to an Event-Driven Con-
trol Graph (EDCG), where every block is executed as a re-
sponse to a triggered event and not as a consequence of a
JavaScript control-flow construct evaluation. Whereas the fi-
nal asynchronous code will be less efficient compared to its
corresponding synchronous version, the advantage is that it
becomes possible to use one process to overlap multiple par-
allel executions. This is important in our application domain,
where a limited number of execution processes should scale
to handle a very large number of concurrent clients.

5.2 Out-of-Order Parallel Execution

The compilation scheme adopted to transform synchronous
code to its asynchronous executable version takes advan-
tage of event-based function calling made available through
Node.js. The event-based execution of different instruction
blocks can be further exploited to implement the out-of-order
parallel execution of I/O-bound operations. To this end, the
compiler performs a static analysis of the source code identi-
fying all the resource-related operations. For each par/pfor
block, the compiler analyzes the contextual information rel-
ative to each variable access and modification, computing a
per-instruction Data Dependency Graph (DDG). The graph
is then compacted by clustering instructions which do not
imply I/O-bound operations. At the end, the resulting DDG
is traversed to reconstruct the correct calling tree and the cor-
responding scheduling instructions are emitted. The sched-
uler runtime object allows to schedule the execution of a
specific block according to multiple events. At runtime, the
scheduler suspends the execution until all parallel branches
of the DDG are finished. In this way, the compiler guaran-
tees that the data dependencies of the sequential execution
are respected.

I1

I3

I2

execOn('done_I0',
 I1,I2)

done_I0

I0

execOn('done_I1','done_I2',
 I3)

done_Get_g

done_I1

done_Get_b

done_I2

1 var G = {}

2 function combine(a,b) { ... }

3 var I0 = function() {

4 G.g = new runtime.resource('http://google.ch/search?q=@')

5 G.b = new runtime.resource('http://bing.com/search?q=@')

6 scheduler.emit('done_I0') }

7 var I1 = function() {

8 G.g.startGet(runtime.query.q)

9 G.g.on('done_Get_g', function()

{ scheduler.emit('done_I1') } }

10 var I2 = function() {

11 G.b.startGet(runtime.query.q)

12 G.b.on('done_Get_b', function()

{ scheduler.emit('done_I2') } }

13 var I3 = function() {

14 var t1 = G.g.resultGet()

15 var t2 = G.b.resultGet()

16 runtime.respond(combine(t1,t2)) }

17 scheduler.execOn('done_I0',I1,I2)

18 scheduler.execOn('done_I1','done_I2',I3)

19 scheduler.exec(I0)

Listing 5. Event-Driven Control Graph (left) corresponding to the JavaScript code (right) as produced by the S compiler for the
source S code in Listing 4.

Listing 5 shows a portion of the JavaScript code as emit-
ted by the S compiler. This code is the compiled version of
the code snipped presented in Listing 4. The example shows
how the synchronous-to-asynchronous compilation process
and the par statement are converted into asynchronous
event-based JavaScript. In the same figure, the EDCG of
the S source is shown. Rounded boxes contain events, while
square boxes describe a function call triggered by (incoming
edge) or emitting (outgoing edge) a specific event. The in-
teraction with the external resource (for instance g.get())
is compiled using the runtime.resource object, which
emits an event (e.g., done Get g) when the remote invoca-
tion has completed. These events will trigger the done I1

and done I2 events asynchronously. Once both events have
been triggered, the scheduling component of the runtime
will resume the execution of the last block I3 of the request
handler, which can access the results fetched in parallel from
the two resources.

6. The S Runtime

The JavaScript code generated by the compiler is executed by
the S runtime. The runtime is running on top of the Google
JavaScript V8 virtual machine and Node.js. We extended
the V8+Node.js runtime with additional native modules,
which provide support for load balancing, process control,
and inter-process communication. Also, the runtime further
extends the S language explicit parallelism mechanism (en-
abled through the par/pfor constructs) with implicit par-
allelism (handling multiple client requests in parallel). This
implicit parallelism support is implemented in the runtime,
based on a number of specialized concurrent processes, effi-
ciently communicating through shared memory data chan-
nels or HTTP according to the context.

6.1 Resource Request Routing

By design, each S request handler is independent of the oth-
ers in that its code can only access variables declared within
its local scope or variables declared as shared state within the
resource or the service. This allows the compiler to produce
a separate JavaScript source file as output for each resource
handler. These files are deployed for execution by the run-
time, which publishes each service through its own TCP/IP

address and port. To allow multiple request handlers to listen
on the same port, the runtime makes use of another indepen-
dent process, called request router (RR). The RR is responsible
for opening the TCP connection port of the service, and for
accepting HTTP requests from external clients. As soon as a
new client request is received, the RR process accepts it and
extracts the routing information by parsing the resource URL
and HTTP method of the HTTP request header. With it, the
RR identifies the request handler process responsible for the
specific request URL.

To do so, the RR manages a routing table listing the map-
ping between resource URLs, methods, and process identi-
fiers of the corresponding request handler processes. In order
to deal with nested resources, the routing table is dynami-
cally managed and updated as soon as new nested resources
are added to a service.

The management of shared state relies on a similar ap-
proach. Each shared state variable is managed by an inde-
pendent autonomous state manager process responsible for
ensuring the consistency of the state as it is exposed to con-
current requests. All the stateful request handlers are pro-
cessed by the state manager, while stateless requests are pro-
cessed by external processes holding a cached version of the
state. The semantics of the HTTP uniform interface enables
each state manager to process multiple idempotent and safe
requests in parallel.

Similarly, pure stateful request handlers (i.e., request han-
dlers accepting only PUT, POST, and DELETE methods) also
use a state manager. However, since no stateless operations
are present, the state is not replicated among different pro-
cesses, but it is located within the process hosting the request
handlers.

Nested resources are also managed as independent pro-
cesses, like any regular request handler. The only difference
is that nested resources are dynamically registered and un-
registered from the service routing table.

Since external RESTful services and different request han-
dlers correspond to the same entity in S (managed through
the res keyword), the runtime system is responsible for dy-
namically resolving each resource’s address and using the
appropriate communication mechanism. Therefore, commu-
nications between different resources within the same ser-

// To be invoked with:

// PUT /crawl?startFrom=...&depth=...

// GET /urlsDiscovered

1 service crawler {

2 res '/crawl' on PUT {

3 function scan(page) { ... }

4 res url = query.startFrom

5 var list = scan(url.get())

6 if(query.depth>1)

7 pfor(var i in list) {

8 par {

9 res crawl =

'/crawl?startFrom=@&depth=@'

10 res discovered =

'/urlsDiscovered?val=@'

11 crawl.put(list[i],query.depth-1)

12 discovered.put(list[i])

13 } }

14 }

15 res '/urlsDiscovered' {

16 state urls = new Array()

17 on PUT {

18 urls.push(query.val)

19 }

20 on GET {

21 respond urls

22 }

23 } }

Listing 6. Parallel Web Crawler in S.

vice are carried out through shared memory communication
channels, while communications with external services are
carried out with standard TCP sockets and HTTP.

6.2 Parallel Runtime Architecture

As discussed in Section 2.1, the semantics of the HTTP proto-
col allows processing multiple requests to the same resource
in parallel. In more detail, S concurrently processes multiple
requests of some type (like GET), while others (like POST)
require exclusive access. Following the design of the S lan-
guage, also requests associated with stateless handlers can be
easily parallelized. Only request handlers altering a private
state cannot be executed in parallel to ensure consistency.

To identify which request handlers can be executed in
parallel, in conjunction to the HTTP semantics, S leverages a
compile-time static analysis. The analysis is based on the
verification of access patterns to shared states. When (at
compile-time) a stateless resource is found, it is marked with
a special identifier allowing the runtime to parallelize the
execution of the specific handler

Request handlers that cannot be parallelized are executed
as a single process by the runtime system. Depending on the
available hardware resources, other handlers are replicated
among multiple processes and requests are automatically
load-balanced among them by the so-called Stateless Resource
Manager (SLR).

7. Case Studies

Complex services requiring the interaction with several ex-
ternal services can be easily implemented in S. In this section,
we illustrate two common Web services developed in S. The
scalability of the two services will be evaluated in Section 8.

The first case study demonstrates a self-parallelizing Web
crawler. The service implementation shows the flexibility of
the language regarding service composition. The crawler ser-
vice composes services by crawling external Web pages, and
by recursively calling itself. The example also shows how

// To be invoked with:

// POST /start?urls=...&key=...

// GET /red/...

1 service mapred {

2 res '/start' on POST {

3 state id = 0; id++

4 res '/red/'+id {

5 state s = 0

6 on GET { respond s }

7 on PUT { s += query.count }

8 }

9 respond { 302 :

{ Location : '/red/'+id } }

10 pfor(var i in query.urls) {

11 res scan = '/map?url=@&key=@&id=@'

12 scan.put(query.urls[i], query.key, id)

13 }

14 }

15 res '/map' on PUT {

16 function scan(page,key) { ... }

17 res url = query.url

18 var page = url.get()

19 res reduce = '/red/'+query.id+'?count=@'

20 reduce.put(scan(page, query.key))

21 }

22 }

Listing 7. Map-Reduce in S.

stateless request handlers can benefit from parallel execution
without having the developer to deal with process-level par-
allelism.

The second example is a Map-Reduce service operating
on external resources. The service features several parallel
components, resulting in a complex runtime architecture.

7.1 Web Crawler Service

The source code of the Web crawler case study is presented
in Listing 6. The service recursively traverses a set of linked
HTML pages and collects their URLs. It is composed of
two resources, one used to crawl a Web page and the other
(/urlsDiscovered) used to collect and to publish the re-
sults of a crawl.

The service is invoked with a PUT request on the /crawl
resource. The corresponding request handler downloads the
first external resource (a Web page specified by the client in
the request with the startFrom parameter), and calls the
scan method. This function implements a simple HTML
parser which scans the given input data (containing the
downloaded Web page) and returns an array containing all
the URLs found. Then, for each URL contained in the list

RR

Clients
Clients

/map
/map

Clients

POST PUT

PUT

GET

/map

/map
/map
/red/id

SLR/start

/red/id

External
Services

GET

Figure 1. Runtime architecture of the Map-Reduce Web ser-
vice case study as executed by the S runtime system.

array, the service recursively calls itself to scan for further
URLs. Meanwhile, all the URLs identified by the service are
saved. The /crawl request handler is kept stateless by send-
ing a PUT request to the /urlsDiscovered resource.

Since the /crawl resource is stateless (that is, it is not di-
rectly changing a shared state nor maintaining a local state),
the runtime can handle multiple requests in parallel. The
stateless nature of the handler, coupled with the usage of the
pfor construct, automatically parallelizes the execution of
the resource handler. In fact, for each set of URLs found at
any recursive invocation, the crawl handler receives mul-
tiple parallel requests generated by itself. Since the runtime
does not make any difference between requests coming from
clients or from internal request handlers, the crawl handler
reacts as if it would have to respond to an increasing number
of client requests, and will thus use an increasingly larger
amount of execution resources, effectively parallelizing the
Web crawling operation.

7.2 Map-Reduce Service

Map-Reduce computations are composed of a parallel com-
putation (the “map” function) followed by a sequential gath-
ering operation (the “reduce” function). Listing 7 shows how
this can be implemented in S. The Map-Reduce service pub-
lishes a /start resource, which receives as input a keyword
and a list of external URLs corresponding to a list of Web
pages (for instance, the list of Web pages could be the re-
sult of the computation performed by the crawler Web ser-
vice presented before). Right after a client POST request is
handled, like for many common Map-Reduce applications.
The service applies a function (scan) which is executed in
parallel and counts the number of occurrences of the given
keyword in all the Web pages. Finally, the result is stored in
a shared state, and is made available through a new nested
resource, so that each client will have a personalized result.

The example exploits the two parallelism models pro-
vided by S and presents a complex runtime architecture, in-
cluding nested resources and shared state management.

First, at line 10, the pfor construct is used to parallelize
the download of all the URLs received as input. In this way,
the /start resource can invoke the /map resource multiple
times in parallel. This is possible thanks to the static analysis
performed by the S compiler. Since the /map resource is
stateless (it only has a PUT request handler with no private
state) the runtime can execute multiple requests to /map

concurrently.
An overview of the runtime architecture used to run the

Map-Reduce service example is shown in Figure 1. Each
box in the figure represents an independent process. Arrows
indicate routing paths as specified by the S runtime, while
dotted boxes represent processes that can be dynamically
parallelized by the runtime, determining the right number
of parallel processes to be executed on the fly based on the
available resources.

8. Performance Evaluation

S has been designed to enable the development of high per-
formance RESTful services. In this section, we provide an
evaluation of the performance of the two case studies pre-
sented in the prior section. Our results clearly demonstrate
that services written in S can benefit from the parallel run-
time architecture and scale to handle thousands of concur-
rent client requests when deployed on multicore machines.

0 1,000 2,000 3,000

0

500

1,000

1,500

2,000

2,500

Client Requests [req/s]

S
er

v
er

R
es

p
o

n
se

s
[r

eq
/

s]

ideal

2x 1 worker

2x 2 workers

2x 4 workers

2x 8 workers

2x 16 workers

Figure 2. Map-Reduce scalability experiment.

8.1 Map-Reduce Service

The scalability of the S Map-Reduce service has been evalu-
ated through the following experiment measuring how well
it can use an increasing number of CPU cores to serve an in-
creasing number of clients. The service has been deployed on
a server machine with a total of 24 cores.

The experiment has been executed with the /map resource
downloading a pool of Web pages hosted on a different ma-
chine. For each client request, the Map-Reduce service is re-
quested to download a total of five Web pages in parallel and
to count, for each page, the number of times a given keyword
appears. The number of external pages to download has been
set to such a low value to measure the service’s scalability
without any risk of network bandwidth saturation. Every in-
coming client request to the /start resource triggers five
concurrent outgoing requests to the /map resource, which
again performs an HTTP GET request to retrieve the given
Web page.

Results are described in Figure 2. The experiment has
been executed by configuring the service to use an increasing
number of parallel workers, up to a maximum limit of 32
processes (16 parallel processes for the Map phase and 16
for the Reduce phase). The chart shows that this service
scales almost linearly up to the limit of the physical resources
available in the system.

8.2 Web Crawler Service

The algorithm implemented by the Web Crawler service
forces the service to call itself recursively for each new URL
found in the page currently being analyzed. This generates
an increasing number of Web pages to be crawled for each
iteration, corresponding to an increasing number of client
requests for the service to be processed.

The service is started by a single request sent from the
client, containing an URL from where to start the crawling
process, and the level of recursion depth to halt the service
at. Due to the nondeterministic nature of the Web, the per-
formance of a Web crawler cannot be measured using real
Web pages. For this reason, we have created a set of ad hoc
Web pages representing a (potentially) infinite binary tree.
The regular structure of the tree lets us use the number of

0 5 10 15 20 25 30

0

2,000

4,000

Number of Worker Processes

T
h

ro
u

g
h

p
u

t
[U

R
L

/
s]

Recursion = 12

Recursion = 14

Recursion = 16

Figure 3. Crawler scalability with different recursion depths.

nodes crawled as a measure of the performance of the ser-
vice. The crawler service is deployed on the same 24 cores
machine of the previous experiment.

In Figure 3 the evaluation of the crawler service im-
plemented in S is presented. The chart shows the average
throughput of the service (number of crawled URLs per sec-
ond) as obtained using different parallelism degrees. The
three curves correspond to three different depth levels of the
tree, namely 12, 14, and 16, corresponding to about 8.2×10

3 ,
3.3× 10

4, and 1.3× 10
5 Web pages to crawl.

Each curve has been obtained by increasing the maximum
number of parallel resources allocated for the service. The
chart in the figure clearly shows how the service is able to
exploit the underlying parallel hardware up to the scalability
limit imposed by the hardware resources available in the
system.

Another evaluation of the parallel algorithm executed by
the crawler service can be done considering the way the
service visits the crawling tree over time. To this end, in
Figure 4 the temporal evolution of the service is shown with
regard to the number of requests received by the service, and
the number of responses it has been able to return. The four
charts present the evolution of these two metrics over time
for four different upper bounds of parallel workers.

The chart with a single worker shows how the recursive
tree traversal code makes the service continuously receive re-
quests for new nodes to be crawled. Since only one worker
process is processing the requests, the service can then be-
gin to answer only when it has reached the crawling frontier
(that is, it has visited all the leaf nodes of the tree). This is
equivalent to the standard evolution of a sequential invoca-
tion of recursive functions: the call stack continues to grow
until the recursion can be stopped.

More interesting things happen when the service is al-
lowed to exploit parallel resources. As visualized in the re-
maining plots, the service is able to overlap the tree traversal
with the answer reconstruction. This is mainly due to the as-
sociative nature of the crawling operation, as the result can
be reconstructed independently of the order in which the tree
is visited. Increasing the number of parallel workers avail-
able in the system both increases throughput and reduces the
total execution time.

9. Related Work

The idea of exploiting state-related information to identify
whether an application can be parallelized has been dis-
cussed in the context of the so-called Permission-Based pro-

20 40 60

0

5,000

10,000

15,000

Time [s]

T
h

ro
u

g
h

p
u

t
[U

R
L

/
s]

Requests

Responses
1 worker

0

2,000

4,000
2 workers

0

2,000

4,000
T

h
ro

u
g

h
p

u
t

[U
R

L
/

s] 4 workers

5 10 15 20 25

0

2,000

4,000

6,000

Time [s]

Requests

Responses

8 workers

Figure 4. Crawler running with 1, 2, 4, and 8 workers.

gramming [4]. Permissions are annotations on variables and
objects such as “read-only” [14] which can be used to address
several issues in software engineering, including concur-
rency [6]. A relevant approach in the direction of Permission-
Based programming languages is represented by the Plaid
language [3]. Plaid is a programming language where con-
currency is the rule, and dependencies between operations
are specified using permissions, allowing the runtime to au-
tomatically execute applications concurrently. Similarly to
Plaid, S exploits the way state is managed to infer which op-
erations can be executed in parallel. As opposed to Plaid’s
approach, S state-related primitives are implicitly defined
using the unique semantics of the HTTP protocol.

S resources and the corresponding request handlers are
influenced by Actors [2]. Unlike traditional actor-based lan-
guages (e.g., Erlang [20] or Scala [12]) the Actor-based se-
mantics in S is kept implicit, and the way a handler processes
messages coming from other peers (or external clients) de-
pends on the kind of method associated with the request.

Self-parallelizing runtime system is featured in several
frameworks. An approach similar to the self-parallelizing
strategy implemented in S is represented by the Self Repli-
cating Object (SRO) programming model presented in [17].
SRO are objects able to partition their state to permit a paral-
lel execution. Similarly to the implicit parallelism in S, SRO
objects can identify whether the state of a component allows
parallel execution or not. One relevant difference is that the
S runtime does not partition state.

With aims similar to the ones behind the parallelism con-
structs of S, the programming model of OoO-Java enables
the automatic parallelization of Java code through the out-
of-order execution of data-independent instructions [15].
Differently from the general purpose of OoO-Java, S sup-
ports out-of-order execution of different operations only
for I/O-bound operations. Other speculative models can be
seen as an alternative to S parallelism constructs [5, 21], as
well as notation-based models [7, 18]. Due to the peculiar-
ity of the Web services domain, the solution of parallelizing
I/O-bound operations adopted in S aims at combining the
strengths of both approaches as it enables the developer to
explicitly identify which part of the code should be paral-
lelized (as with annotations) without any risk of altering the
original sequential semantics (as guaranteed by determinis-
tic speculative approaches).

Out of the realm of server-side development technologies,
JavaScript-based approaches have been proposed in several
cases. Flapjax [16], for instance, is a JavaScript-compatible
language based on a Functional Reactive Programming
model [8]. Similarly to S, Flapjax adopts an event-driven ap-
proach, and similarly to the S compiler, Flapjax code is com-
piled to JavaScript. Finally, an exhaustive performance anal-
ysis of several JavaScript applications is presented in [11].

10. Conclusion and Future Work

In this paper we presented the S service scripting language,
its compiler, and its runtime system. The initial domain tar-
geted by the language consists of service-oriented appli-
cations, for which a parallel runtime architecture suitable
for high-performance execution of RESTful Web services
has been developed. The language features explicit control-
flow parallelism constructs which developers can apply to
speed up the execution of individual request handlers. Ad-
ditionally, the language leverages its implicit state-oriented
programming model to automatically parallelize the exe-
cution of stateless and stateful services by employing de-
synchronization and self-parallelization techniques. The re-
sults presented in the paper show how applications devel-
oped using the S language can efficiently exploit parallel ar-
chitectures such as multicore machines to scale in the number
of clients they can serve concurrently.

A further extension of the S language and runtime sys-
tem will deal with another class of modern Web services,
namely HTTP-based streaming services. In such a context,
the S self-parallelizing runtime will also have to deal with
non regular streams, and will have to adapt to the actual
frequency of incoming requests. We also have started to ex-
periment with self-tuning mechanisms based on auto-scaling
techniques which not only take into account the number

of cores available on the machine but also dynamically ad-
just the allocation of processes to cores based on their actual
workload.

Acknowledgments

The work presented in this paper has been supported by the
Swiss National Science Foundation with the SOSOA project
(SINERGIA grant nr. CRSI22 127386).

References
[1] HTTP protocol specification. URL http://www.w3.org/

Protocols/rfc2616/rfc2616.html.

[2] G. Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986.

[3] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-
oriented programming. In Proc. of OOPSLA, pages 1015–1022,
2009.

[4] J. Aldrich, R. Garcia, M. Hahnenberg, M. Mohr, K. Naden,
D. Saini, S. Stork, J. Sunshine, E. Tanter, and R. Wolff.
Permission-based programming languages: Nier track. In Proc.
of ICSE, pages 828–831, 2011.

[5] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multi-
threaded programming for C/C++. In Proc. of OOPSLA, pages
81–96, 2009.

[6] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: preventing data races and deadlocks. In Proc. of
OOPSLA, pages 211–230, 2002.

[7] L. Dagum and R. Menon. Openmp: An industry-standard api
for shared-memory programming. IEEE Comput. Sci. Eng., 5:
46–55, January 1998.

[8] C. Elliott and P. Hudak. Functional reactive animation. In Proc.
of ICFP, pages 263–273, 1997.

[9] A. Fettig and G. Lefkowitz. Twisted network programming essen-
tials. O’Reilly, 2005.

[10] R. T. Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, 2000.

[11] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers. A limit study
of JavaScript parallelism. In Proc. of IISWC, pages 1–10, 2010.

[12] P. Haller and M. Odersky. Scala actors: Unifying thread-based
and event-based programming. Theor. Comput. Sci., 410:202–
220, February 2009.

[13] I. Hickson. Web workers. World Wide Web Consortium, Work-
ing Draft WD-workers-20110310, March 2011.

[14] J. Hogg. Islands: aliasing protection in object-oriented lan-
guages. In Proc. of OOPSLA, pages 271–285, 1991.

[15] J. C. Jenista, Y. h. Eom, and B. C. Demsky. OoOJava: software
out-of-order execution. In Proc. of PPoPP, pages 57–68, 2011.

[16] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Green-
berg, A. Bromfield, and S. Krishnamurthi. Flapjax: a program-
ming language for ajax applications. In Proc. of OOPSLA, pages
1–20, 2009.

[17] K. Ostrowski, C. Sakoda, and K. Birman. Self-replicating objects
for multicore platforms. In Proc. of ECOOP, pages 452–477, 2010.

[18] K. H. Randall. Cilk: efficient multithreaded computing. PhD thesis,
1998.

[19] S. Tilkov and S. Vinoski. Node.js: Using JavaScript to build
high-performance network programs. IEEE Internet Computing,
14:80–83, November 2010.

[20] R. Virding, C. Wikström, and M. Williams. Concurrent program-
ming in ERLANG (2nd ed.). Prentice Hall International (UK) Ltd.,
1996.

[21] C. von Praun, L. Ceze, and C. Caşcaval. Implicit parallelism
with ordered transactions. In Proc. of PPoPP, pages 79–89, 2007.

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

	Introduction
	Background
	RESTful Web Services and the HTTP Protocol
	JavaScript for Server-Side Development

	The Design of the S Language
	The Programming Model of S

	The S Service Scripting Language
	Syntax
	A Simple Stateful Service
	RESTful Service Composition and Dynamic Nested Resources
	Explicit Control-Flow Parallelism Constructs

	Compile-time Support
	Synchronous to Asynchronous Event-Driven Compilation
	Out-of-Order Parallel Execution

	The S Runtime
	Resource Request Routing
	Parallel Runtime Architecture

	Case Studies
	Web Crawler Service
	Map-Reduce Service

	Performance Evaluation
	Map-Reduce Service
	Web Crawler Service

	Related Work
	Conclusion and Future Work

