
Embedding Continuous Lifelong Verification in Service Life Cycles∗

Domenico Bianculli
University of Lugano
Faculty of Informatics
Lugano, Switzerland

domenico.bianculli@lu.unisi.ch

Carlo Ghezzi
Politecnico di Milano

DEEP-SE group - DEI
Milano, Italy

carlo.ghezzi@polimi.it

Cesare Pautasso
University of Lugano
Faculty of Informatics
Lugano, Switzerland

cesare.pautasso@unisi.ch

Abstract

Service-oriented systems are an instantiation of open
world software, which is characterized by high dynamism
and decentralization. These properties strongly impact on
how service-oriented systems are engineered, built, and op-
erated, as well as verified. To address the challenges of ap-
plying verification to open service-oriented systems, in this
position paper we propose to apply verification across the
entire life cycle of a service and introduce a verification-
oriented service life cycle.

1. Introduction

One of the defining properties of Software Service Engi-
neering, as opposed to traditional Software Engineering, is
the open world assumption [3]. The implications of this as-
sumption affect all aspects of this emerging discipline, e.g.,
from how to design a service-oriented architecture to the no-
tion of correctness and quality that can be applied to define
and check the integrity and the validity of a system design.
In this position paper we focus on the consequences of this
assumption on the way verification is carried out in the ser-
vice life cycle.

In particular, we argue for the need for embedding con-
tinuous lifelong verification across the entire service life cy-
cle. Thus, it is no longer sufficient to apply verification dur-
ing a particular phase or using a specific technique, such
as proving properties based on a service contract at design
time, or testing a service at deployment time to ensure and
guarantee that it will continue to work as it has been spec-
ified or tested during the remainder of its lifetime. Since
services live in an open world, where change is frequent,
unexpected, and welcome [13], it becomes important to be
able to assert properties that have a lifelong validity: both at

∗This work has been partially supported by the EU-FP7-215483 project
“S-Cube” and by the ERC grant 227977 “SMScom”.

design time, deployment time, and at run time. Continuous
verification is about checking services as they are put into
production, but also advocates that they are monitored (and
checked) during their entire productive life.

This paper shows how different verification tech-
niques [2] can be applied at different stages of the service
life cycle, by proposing to enhance conventional life cycle
models with a verification-oriented life cycle layer. This
verification-oriented life cycle iteratively integrates and cor-
relates different techniques, and makes possible to guaran-
tee that the same properties verified based on services con-
tract specifications, will still be checked once the service be-
comes an executable artifact and it is embedded into a larger
service-oriented architecture. This way, continuous lifelong
verification can provide a fundamental building block for
delivering self-adaptive systems [8].

The rest of this paper is organized as follows. Section 2
briefly surveys the existing proposals for service life cy-
cles and discusses to which extent they support verification,
leading to Section 3, which motivates the need for continu-
ous lifelong verification of service-based applications. Sec-
tion 4 presents our verification-oriented model of service
life cycle, which shows how to achieve continuous lifelong
verification. Section 5 discusses related work and Section 6
concludes the paper with an outlook on possible future re-
search directions.

2. Life cycle models

In this section we discuss how service verification is em-
bedded in the software service life cycle models proposed
by several leading SOA vendors and SOC researchers.

Some authors (e.g., [10]) suggest to comply with a tra-
ditional life cycle, following a sequence of phases such as
analysis, design, development, testing, deployment and ad-
ministration. This model has a dedicated phase for (func-
tional) testing, which strictly follows the development phase
and precedes deployment. Hints are also given about the



possibility to monitor the service usage during the adminis-
tration phase, even though the topic is not further discussed.

In other cases, the life cycle model is adapted to the spe-
cific characteristics of service-centric software systems, as
proposed by [7]. This is the case for life cycle models pro-
posed by industrial vendors. IBM, for example, proposes
a model, assembly, deploy and manage cycle, in which the
last phase is also devoted to monitoring the performance
of a service and detecting the failure of system compo-
nents. Sun presents the SOA Repeatable Quality method-
ology, which includes the conception, inception, elabora-
tion, construction and transition phases in an iterative way.
However, verification activities are not explicitly mentioned
in the documentation. Oracle/BEA proposes a life cy-
cle model that clearly separates design-time activities (i.e.,
identify business process, service modeling, build and com-
pose) from those carried out at run time (i.e., publish and
provision, integrate and deploy, secure and manage, evalu-
ate). In this model, verification activities belong to the se-
cure and manage phase, and are mainly focused on SLA
management, performance optimization and dealing with
error events.

As for academic contributions, [14] illustrates a (Web)
service life cycle model and a service-oriented design
methodology. The life cycle starts with an initial planning
phase, followed by a set of phases to be iteratively repeated:
analysis and design, construction and testing, provision-
ing, deployment, execution and monitoring. Verification is
performed before services are put into operation, by means
of functional, performance, interface and assembly testing,
and when services becomes operational, by means of QoS
monitoring techniques. [11] proposes a stakeholder-driven
life cycle, with much emphasis on the assignment of ac-
tivities to stakeholders and on the interaction between and
across them. The service provider is responsible for service
functional testing at design time and service monitoring at
run time. From the point of view of service consumers, veri-
fication activities include application testing at design time,
in case the service consumer plays also the role of an ap-
plication provider/service integrator, and — at run time —
monitoring of the services that are consumed.

3. Motivation

As shown above, existing proposals of service life cycles
advocate to perform verification either at a specific stage of
the life cycle, e.g., at design time, before putting a service
into operation, or at execution time, while the service is be-
ing provisioned. In some cases, verification is performed at
both stages, but usually the properties verified at one stage
are different from and not related to the ones verified at the
other stage, e.g., by following the classical dichotomy be-
tween functional and non-functional properties.

Such narrow scope of verification does not entirely ad-
dress the implications of the open world assumption on how
verification activities are performed. Indeed, the key issue
of continuous lifelong verification consists of spanning ver-
ification activities across the service life cycle, which can
be iterated multiple times. We motivate the need for apply-
ing continuous verification during the entire life span of a
service by means of the following three statements.

Design-time verification only gives limited guarantees.
This kind of verification is carried out by assuming some
properties about and using some models of the environment
with which the service will interact. The environment is
represented mostly by 3rd-party services and the distributed
network infrastructure. As for the former, there is no guar-
antee that a service provider will eventually fulfill the obli-
gations promised in a service agreement. For example, dur-
ing a standard maintenance activity, a provider could inad-
vertently modify an existing service into an upgraded but
incorrect and/or incompatible version, which could break
the compatibility with service clients. Additionally, a mali-
cious provider could modify the exported service, by offer-
ing a lower-quality service than the one promised through
the agreement. Regarding the latter, the parameters esti-
mations used to model the network infrastructure are often
inaccurate, since they must be provided a-priori by domain
experts and are related to quantities that may change over
time. Thus a service that before deployment was proved
to satisfy the requested quality of service requirements may
turn out in practice to violate them, because of the mismatch
between the abstract models that were used for verification
before the deployment and the actual state of the environ-
ment at run time.

A service lives also between design and execution. A
service life cycle contains other stages besides design and
execution. Thus a coherent lifelong verification methodol-
ogy should indicate the use of specific techniques at every
stage of the life cycle. For example, when a service is about
to be deployed, it should be “auditioned”’ [5], i.e., it should
be tested during the interaction with the actual services that
will be provided by business partners, before exposing the
service to public usage.

Execution-time verification can close the loop of itera-
tive service life cycles. Some verification activities may
operate on live data acquired by means of run-time moni-
toring, but it may not always be practical to perform them
on-the-fly. Therefore such data can be used to fuel the next
iterations of the service life cycle, by providing valuable
feedback to the service architects, modelers, and develop-
ers. Live data can be exploited for a thorough audit, an
accurate analysis and model calibration before deploying a
new version of the service.



4. Verification-oriented life cycle

Since many of the life cycle models reviewed in Sec-
tion 2 have a coarse-grained modularity in terms of activi-
ties [11], we ground our verification-oriented life cycle on
a slightly modified version of the model described in [14].
This model has an intrinsic iterative structure of the life cy-
cle, which is a prerequisite to achieve continuous lifelong
verification. As we are going to show, it is thanks to the
feedback provided by the verification activities that the loop
in the iterative life cycle can be closed. With respect to the
original formulation of the model, we shifted the testing and
monitoring phases into the verification-oriented layer of the
model.

The complete model is shown in Figure 1: non
verification-related phases of the life cycle are depicted with
a white-filled shape, while the corresponding verification
activities are highlighted using a grey-filled shape.

The analysis and design phase identifies the require-
ments of the service-based application, builds the models of
the business processes defining the applications and speci-
fies the required services. We envision that at this stage,
the requirements are captured and automatically formal-
ized, such that their formal models will be made available
across the entire lifespan of the service. This is a crucial
step, since the formalized requirements represent the prop-
erties for which we want to assert their lifelong validity. A
relevant contribution to this step is embodied by a model-
ing/specification language that should be able to capture all
facets of the behavior and of the QoS related to services ex-
ecution and interaction. The first step of continuous lifelong
verification is to ascertain that the properties (both func-
tional and non-functional) corresponding to requirements
are met by abstract design models of the service, evalu-
ated in a given context. To achieve this, we suggest the use
of static analysis techniques such as model checking. The

Static 
analysis

Testing

Static 
analysis

Monitoring

Run-time 
Verification

Execution Construction

Analysis
and

Design

Live 
testing

Provisioning
and

Deployment

Planning

Figure 1. Verification-oriented life cycle

goal is to check if a formal description of a certain property
holds in the service model by transforming it to a suitable
representation that can be efficiently verified.

The construction phase is about developing the actual
implementation of the service-based application. In this
phase, we recommend to use static analysis techniques to
verify the correctness of the application, as well as test-
ing techniques that operate directly on the implementation.
With respect to the previous phase, the main difference
lies in the system under verification: in this phase, veri-
fication is performed against the concrete implementation
of the service. Therefore, the verification techniques re-
quire more tuning; e.g., source-level analysis tools should
be used. However, many of the verification artifacts used in
the previous phase (e.g., temporal logic formulae or queue-
ing network models) can still be used in this phase. To do
so, the previously mentioned verification techniques can be
used in combination: e.g., the counter-examples obtained
from the execution of model checking can be used to de-
rive dedicated test cases. Moreover, the properties captured
during the analysis phase can be converted, using specific
model-transformation techniques, into proper artifacts suit-
able for source-level verification and testing.

The provisioning phase is about making strategic de-
cisions on service governance, certification, metering and
billing, while the deployment phase is concerned about
making the service publicly available. During these phases
we claim that pre-deployment live testing, i.e., testing the
interactions of a service with other actual services, can be
a supporting tool for ensuring the validity of governance
decisions, such as the choice of business partners to inter-
act with, or the kind of service level agreement to be signed.
Moreover, testing (both functional and non-functional) with
the actual services may also reveal some problems that were
not detected in the previous phase because of the abstract
models that were used. Also in this phase, the original
verification artifacts corresponding to requirements can be
transformed into properties that can checked and/or mea-
sured during the live testing.

Finally, the execution phase is about the productive part
of the cycle, when the service is kept in operation. In this
phase, the main verification activities are monitoring and
run-time verification. The former collects and analyzes data
about the quality of the provisioned service and the 3rd-
party services it interacts with, while the latter analyzes the
execution trace to detect possible violations of the initial
requirements. Indeed, the models corresponding to these
requirements, are transformed, during the deployment, into
data collectors (e.g., to monitor QoS properties such as re-
sponse time and throughput) and failure detectors (e.g., to
detect a violation of a functional or temporal assertion).
One of the key aspects of continuous lifelong verification
is that run-time verification activities may support model



calibration, by using the collected data to provide a better
estimation of the parameters that define the external oper-
ating environment [9], and post-mortem analysis, which is
usually performed off-line by means of a static analysis tool.
The information collected by these verification activities is
also fed into the next iteration of the cycle providing valu-
able input to the analysis and design phase.

5. Related work

Section 2 has already described the different service life
cycle models and how they deal with the issue of verifica-
tion. However, there have been some other proposals about
the verification of service-based applications, which do not
strictly fall under the umbrella of service life cycles. For ex-
ample, in previous work [6] some of the authors addressed
the issue of lifelong verification of service compositions
and proposed a methodology to deal with this issue. How-
ever, this proposal considered a simplified model of a very
generic service life cycle, which only distinguished between
a design-time phase and a run-time phase. Agile methods
like Test-driven development [4] (TDD) emphasize the role
of continuous testing during the development process. In
principle, this is similar to our approach towards continuous
verification; however they focus only on the specific imple-
mentation/development phase of the life cycle. ASOP [15]
is a proposal for an agile service-oriented (development)
process; however, as far as verification is concerned, it only
considers TDD-like verification techniques.

The methodology followed by this work to create a ser-
vice life cycle tailored to specific viewpoints has been intro-
duced by [13], where a change-oriented service life cycle
has been proposed in the context of service evolution fea-
turing support for: (re-)configuration, alignment, and con-
trol of services upon changes. A similar approach — even
though not specific to service-oriented systems engineering
— can be found in [12], where a waterfall software devel-
opment life cycle has been extended to include security into
every phase of the life cycle.

6. Conclusion and future work

Service-oriented systems live in an open world that re-
quires new engineering methodologies to deal with the in-
trinsic dynamic and decentralized nature of these systems.
This paper has focused on verification, by showing how ex-
isting service life cycle models are inadequate to support
continuous lifelong verification of service-based applica-
tions — which we believe to be a key aspect of this kind of
applications — and it has proposed a verification-oriented
life cycle to achieve this goal.

Although in this paper we have grounded our
verification-oriented life cycle on a specific life cycle

model, in the future we will consider other existing life
cycle models and try to overlay the proposed verification-
oriented life cycle on them. In particular, we will investi-
gate the challenges to adapt the verification-oriented life cy-
cle layer to agile development processes, since our proposal
augments an iterative model. In all cases, we will evalu-
ate its adoption in the context of real service-based applica-
tions development, by measuring the impact on the project
quality, duration and cost. Moreover, we will investigate the
role and the use of models [1] in the context of the proposed
life cycle, to define a model-driven methodology to achieve
continuous lifelong verification.

References

[1] D. Ardagna, C. Ghezzi, and R. Mirandola. Rethinking the
use of models in software architecture. In Proc. of QoSA
2008, volume 5281 of LNCS, pages 1–27. Springer, 2008.

[2] L. Baresi and E. Di Nitto, editors. Test and Analysis of Web
Services. Springer, 2007.

[3] L. Baresi, E. D. Nitto, and C. Ghezzi. Toward open-world
software: Issue and challenges. IEEE Computer, 39(10):36–
43, 2006.

[4] K. Beck. Test Driven Development by Example. Addison-
Wesley Professional, November 2002.

[5] A. Bertolino, L. Frantzen, and A. Polini. Audition of web
services for testing conformance to open specified protocols.
In Architecting Systems with Trustworthy Components, vol-
ume 3938 of LNCS, pages 1–25. Springer, 2006.

[6] D. Bianculli and C. Ghezzi. Towards a methodology for life-
long validation of service compositions. In Proc. of SDSOA
2008, pages 7–12. ACM, 2008.

[7] M. B. Blake. Decomposing composition: Service-oriented
software engineers. IEEE Software, 24(6):68–67, June 2007.

[8] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl. A journey to highly dynamic, self-adaptive service-
based applications. Autom. Softw. Eng., 15(3):313–341,
2008.

[9] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburelli.
Model evolution by run-time adaptation. In Proc. of
ICSE’09. IEEE Computer Society, 2009. to appear.

[10] T. Erl. Service-Oriented Architecture: Concepts, Technol-
ogy, and Design. Prentice Hall, August 2005.

[11] Q. Gu and P. Lago. A stakeholder-driven service life cycle
model for SOA. In Proc. of IW-SOSWE’07, pages 1–7, 2007.

[12] A. M. Hoole, I. Simplot-Ryl, and I. Traore. Integrating
contract-based security monitors in the software develop-
ment life cycle. In Proc. of FLACOS’08, pages 25–30, 2008.

[13] M. P. Papazoglou. The challenges of service evolution. In
Proc. of CAiSE 2008, volume 5074 of LNCS, pages 1–15.
Springer, 2008.

[14] M. P. Papazoglou and W. V. D. Heuvel. Service-oriented de-
sign and development methodology. Int. J. Web Eng. Tech-
nol., 2(4):412–442, year 2006.

[15] A. Qumer and B. Henderson-Seller. ASOP: An ag-
ile service-oriented process. In New Trends in Software
Methodologies, Tools and Techniques, pages 83–92. IOS
Press, 2007.


	. Introduction
	. Life cycle models
	. Motivation
	. Verification-oriented life cycle
	. Related work
	. Conclusion and future work

