
Why is the Web Loosely Coupled?
A Multi-Faceted Metric for Service Design

Cesare Pautasso
Faculty of Informatics University of Lugano

6900 Lugano, Switzerland
cesare.pautasso@unisi.ch

Erik Wilde
School of Information

UC Berkeley
dret@berkeley.edu

ABSTRACT
Loose coupling is often quoted as a desirable property of
systems architectures. One of the main goals of building
systems using Web technologies is to achieve loose coupling.
However, given the lack of a widely accepted definition of
this term, it becomes hard to use coupling as a criterion to
evaluate alternative Web technology choices, as all options
may exhibit, and claim to provide, some kind of “loose” cou-
pling effects. This paper presents a systematic study of the
degree of coupling found in service-oriented systems based
on a multi-faceted approach. Thanks to the metric intro-
duced in this paper, coupling is no longer a one-dimensional
concept with loose coupling found somewhere in between
tight coupling and no coupling. The paper shows how the
metric can be applied to real-world examples in order to
support and improve the design process of service-oriented
systems.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Decision Tables; D.2.8 [Software Engineering]:
Metrics—Software Science; H.3.5 [Information Storage
and Retrieval]: Online Information Services—Web-Based
Services

General Terms
Design, Measurement

Keywords
Loose Coupling, Tight Coupling, Web Services, SOA, REST,
WS-*, RPC, HTTP

1. INTRODUCTION
One of the defining properties of Web services and service-

oriented architectures is their “loose coupling” [20]. Loose
coupling has a positive connotation as it implies that ser-
vices share only a small set of assumptions and therefore
the impact of change is limited, and services can evolve in-
dependently [18]. A loosely coupled service-oriented system
is thus easy and cheap to evolve and has the potential to
grow as rapidly and scale as easily as the Web. Beyond
this point, however, there is little agreement upon what the

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

term “loose coupling” actually means in the context of spe-
cific Web technologies (e.g., [3, 9, 27, 19]).

Taking the ongoing SOAP vs. REST debate [31] as an
example, the argument of being “more” or “less” loosely cou-
pled has been brought forward by each side. For exam-
ple, giving an explicit description of a service interface in a
WSDL document can be regarded as loose coupling, because
it enables the interoperability of clients with services imple-
mented in any programming language. However, it can also
be regarded as tight coupling, because changes made to the
WSDL may break clients that are built using code automat-
ically generated from an earlier version of the service de-
scription. Given the lack of a clear definition of the concept
of coupling, as we are going to discuss, different interpreta-
tions are possible. Each side is therefore, in its own view,
correct in labeling the other as the one fostering a “tightly
coupled” approach to the design of service-oriented systems.

This paper explores how to apply the concept of coupling
to the design of service-oriented systems in greater detail,
defines what it means to do so, and uses this definition in a
way which leads to a better understanding of the different
semantics people refer to when they mention loose and tight
coupling. Our goal is to make explicit the various semantics
that are often implicitly associated with the term, so that
alternative interpretations become clear, and Web service
technologies can be evaluated and compared in terms of the
multi-faceted coupling metric we introduce in this paper.

Through a systematic study, we have collected 12 facets
which can be associated with coupling related to specific
aspects of Web technologies. This paper gives a definition
of each facet, and discusses their relationships and interde-
pendencies based on concrete examples. We also apply our
multi-faceted definition to evaluate the coupling of existing
Web technologies and Web services frameworks (remote pro-
cedure calls over HTTP [2, 13] vs. the RESTful usage of the
HTTP protocol [12, 14] vs. a WS-* compliant enterprise-
service bus [6]). We present our findings indicating that
whereas current technologies can be considered loosely cou-
pled as far as they provide platform independent solutions,
they achieve a different degree of coupling according to all of
the other facets. In particular, no technology per-se provides
loose coupling in terms of all the facets. Also, we show that
the degree of coupling of a service-oriented system does not
fully depend on the choice of the underlying Web services
platform. As far as certain facets are concerned (i.e., granu-
larity and evolution), loose coupling is not influenced by the
choice, e.g., between REST or WS-* but instead depends on
the outcome of more specific design decisions.



This paper is organized as follows. We first introduce
some related work (Section 2) and discuss the origins of the
term (Section 3) to motivate the need for a better definition
of loose coupling. Section 4 enumerates twelve facets of cou-
pling giving concrete examples on how they affect Web tech-
nologies. Section 5 evaluates our multi-faceted definition to
measure the coupling of concrete technology examples. Sec-
tion 6 concludes the paper.

2. RELATED WORK
Most authors recognize that the “notion of designing ser-

vices to be loosely coupled is the most important, the most
far reaching, and the least understood service characteris-
tic” [27, p. 75]. Loose Coupling has been named the “secret
sauce of service-orientation” [3, Chapter 5]. Also, the “need
for loose coupling” is somewhat self-evident and the “notion
of loose coupling is a fundamental underpinning of SOA”[41,
p. 10]. However when it comes to defining precisely what
characteristics of coupling are the most significant for the
design of service-oriented systems, only a limited consensus
emerges from the literature.

Zimmermann et al. [47, p. 157] use loose coupling im-
plicitly as a synonym of flexibility by means of information
hiding: “a client application is not tightly coupled with a
server, but coded against an abstract service description”.
This definition resonates with the following:

“the phrase loosely coupled describes enter-
prise services’ characteristic of interacting in well-
defined ways without needing to know each other’s
inner workings. This means that the service’s
functionality can change without affecting the
services that use it, as long as the behavior de-
scribed in its interface remains the same–that is,
as long as it continues providing the functionality
it provides.” [44, p. 111]

Delivering loose coupling by means of contracted inter-
faces is also recommended by Bloomberg and Schmelzer [3,
p. 90]. This view is related to the “forgiving nature of
the Web”, which enables browsers to work together with
Web servers developed by different vendors. A similar def-
inition of interface coupling is provided by Newcomer and
Lomow [27]. The same authors also mention the importance
of reusing service interfaces (so they are not coupled to a sin-
gle business process) as well as the danger of coupling clients
and services to a specific platform (i.e., to avoid vendor lock-
in). Platform coupling is also mentioned by Weerawarana
et al. [41]. However, the authors stress that “a message-
based approach fosters loose coupling” and “Web service
technology is built on the concept of [ asynchronous ] mes-
saging”. Hence, Web service technology is loosely coupled,
as opposed to distributed object middleware platforms based
on synchronous interactions. The tightly coupled nature of
RPC-style Web services is discussed by Hohpe [18], where
message-oriented middleware is presented as the loosely cou-
pled solution to enterprise application integration problems.

Kaye [20, Chapter 10] discusses the implications of tight
vs. loose coupling on the following aspects: interaction, mes-
saging style, message paths, technology mix, data types,
syntactic definition, bindings, semantic adaptation, software
objective, and consequences. Krafzig et al. [23, Chapter 3]
also take a multi-level approach to describe coupling in dis-
tributed systems. These are: physical level (whether services

are directly or indirectly connected), platform (i.e., OS and
programming language) dependency or independency, com-
munications style (synchronous vs. asynchronous), type sys-
tem (strongly typed interfaces vs. weakly typed payloads),
interaction patterns (chatty distributed objects vs. message
bus), process control (centralized vs. distributed), and dis-
covery (static binding vs. dynamic binding).

Whereas the classifications developed by Kaye and Krafzig
are related to the multi-faceted definition we are going to
present in this paper, we have revisited their classifications
in the context of the SOAP vs. REST debate, entirely fo-
cusing on service design issues (i.e., the technical questions
regarding loose vs. tight coupling), while the other classifi-
cations also include considerations that are more related to
the implementation, deployment, and management aspects
of services.

3. ORIGINS
In computer science, the notion of coupling predates the

emergence of service-oriented computing. Some early us-
age examples can be found in distributed systems and soft-
ware engineering design principles. In distributed systems,
loosely coupled architectures are distinguished from “closely
coupled” [36] ones based on whether two processes may com-
municate through some form of shared memory (close) or
may only rely on message passing (loose). In practice, loose
coupling in terms of space, time, and synchronization has
been associated the properties of distributed systems de-
signed according to the publish/subscribe paradigm [10]. In
software engineering, the basic design principle of modular-
ity implies the decomposition of a software architecture into
modules characterized by high cohesion and low coupling [39,
45, 26]. Thus, coupling “measures the interdependencies of
two modules” [15, 5] and it can be understood that a low
degree of coupling is beneficial to aid the understanding and
support the evolution of a system [25].

Even though the term “loose coupling” is often associ-
ated with software architectures (and was introduced into
computer science as early as 1974 [35]), its origins can be
traced back even earlier, leading to research on organiza-
tional structures as early as 1967 [37]:

“The concept [ of loose coupling ] has a rare
combination of face validity, metaphorical salience,
and cutting-edge mysticism, all of which encour-
age researchers to adopt the concept but do not
help them to examine its underlying structure,
themes, and implications. [ . . . ] Because the
concept has been underspecified, its use has gen-
erated controversy. Researchers who oppose the
concept on the basis of its imprecision have watched
as more and more researchers adopt it. Researchers
who advocate the concept on the basis of its face
validity have watched it become unrecognizable.
Researchers who are in the middle have often
used the concept hesitantly, convinced that it fits
the phenomena they study, but uncertain about
its meaning.” [29]

By applying this quote from organization research to the
context of service-oriented systems, it is easy to realize how
marketing buzzwords sweep through the IT industry and
gain acceptance thanks to the positive impression they de-
liver and thanks to their imprecise definition, and thus their



ability to be quoted in many different contexts. The prob-
lems which may cause tight coupling or which could be
avoided by implementing loose coupling are the same in or-
ganizations and IT system architectures: the tension be-
tween the efficiency and safety of an internally determinate
and completely rational structure, vs. the necessity to fit
into an open world of uncertainty and conflicting concepts.
Introducing tight coupling in complex systems may also af-
fect their reliability, making accidents more prone to happen,
because local failures are more likely to propagate [34]. In
case of loose coupling, the following quote is relevant to illus-
trate how it can fit well with the design of service-oriented
systems:

“A final advantage of coupling imagery is that
it suggests the idea of building blocks that can be
grafted onto an organization or severed with rel-
atively little disturbance to either the blocks or
the organization. [ . . . ] Thus, the coupling im-
agery gives researchers access to one of the more
powerful ways of talking about complexity now
available.” [42]

“Loose coupling” often is being perceived as referring to
any intermediary state on a linear scale going from “no cou-
pling” to “tight coupling”, with “loose coupling” being any-
where in between these two extremes. This conceptualiza-
tion looks at coupling as a one-dimensional concept. Or-
ten and Weick [29] argue that the linear view of coupling
is too constrained, and suggest to follow a two-dimensional
approach.

responsive
non-responsive

non-distinctive distinctive
non-coupled

tightly coupled loosely coupled
decoupled

Figure 1: Two-Dimensional View of Coupling in Or-
ganizational Studies

The two-dimensional definition shown in Figure 1 has
been developed within the context of organizational stud-
ies. But even for the goal of achieving loose coupling in the
context of service-oriented systems design, this model can
be useful to understand that a multi-dimensional approach
to define the concept can lead to improved understanding.
If the IT landscape for which services are being designed
has distinctive components, then it is not realistic to look at
tight coupling as the ultimate goal.1 If, however, for organi-
zational, contractual, political, or legal reasons, it is possible
to remove distinctiveness, it is possible to design and de-
ploy a tightly coupled system. In the two-dimensional view
of coupling, the question is how to achieve responsiveness
(i.e., the ability for all business-level goals to be achieved by
having services interact) given the design goals and/or the
constraints of the environment.

Even with this two-dimensional view of coupling, however,
it is still not completely clear what these two orthogonal
axes (responsiveness, distinctiveness) refer to in the context
of service-oriented systems design. Nowadays it is, for exam-
ple, well-accepted that distinctiveness in terms of the phys-

1With the exception being the introduction of a technology
layer which introduces homogeneity, which is the traditional
middleware approach.

ical network infrastructure is mostly irrelevant — the Inter-
net provides a protocol stack which makes it unnecessary to
deal with network protocol issues that were serious issues
when computer networks were still dominated by vendor-
specific protocol suites. This begs the question what kind
of properties one should look for when evaluating a given
technology according to the model shown in Figure 1. The
next Section thus introduces a number of facets which we
have identified as being important properties for deciding
how a given service-oriented design should be evaluated to
measure its coupling properties.

4. COUPLING FACETS
This section introduces a framework which can serve as a

tool for analyzing the kind of coupling implied by a given
technology choice during the design of a service-oriented
system. From the previous discussion, it is clear that cou-
pling is a complex concept that requires to explore a multi-
dimensional space. To do so, we look at various facets to
which the term can be applied. We prefer the term facets
over dimensions to emphasize that not all facets are com-
pletely independent. While enumerating the following facets
(summarized in Table 1), we have attempted to achieve a
high degree of independence between them, but we do not
claim that they are fully orthogonal.

The facets cover all relevant design aspects that help to
understand which kind of coupling can be found in a system.
Our method for identifying relevant facets is based on the
principle that a facet should be included if there is a concrete
scenario where the facet can help to better understand how
a system design or a technology might be perceived as being
tightly or loosely coupled.

4.1 Discovery
Discovery is one of the facets which can be approached

in different ways. In closed environments, it is possible to
define and implement policies for compulsory registration
of service descriptions and interfaces, making it possible for
clients to discover them (e.g., using UDDI registries [7]).
The Web, however, has no central registry beyond the DNS
(which is not Web-specific, but a core part of the Internet
protocol suite). Some attempts were made to have “Web
site registries” (similar to Yahoo! or the Open Directory
Project) but such centralized registry-based approaches were
overwhelmed by the Web’s rate of growth, and the lack of
a universally accepted scheme for classifying Web resources.
Nowadays, clients perform discovery on the Web through
search engines. Search engines do not necessarily require the
registration of new Web pages, as they can rely on crawlers
following hyperlinks to discover them.

RESTful Web services are usually not described or reg-
istered in any standardized or centralized way. The idea is
that a RESTful Web service can be discovered by decentral-
ized referral (i.e., by exchanging a hyperlink pointing to it)
and does not need a description in terms of its operations,
and that the representations that the service accepts and
produces are exposed through HTTP, and are documented
as media types. Thus, discovery for a RESTful Web service
means interacting with it, and the only possible “registry”
might be sets of URI templates [16], describing how its re-
sources are addressed through URIs.

In the case of SOAP and WS-*, no equivalent “loosely
coupled” mechanism is available to describe relationships



Facet Tight Coupling Loose Coupling

4.1 Discovery Registration Referral
4.2 Identification Context-based Global
4.3 Binding Early Late
4.4 Platform Dependent Independent
4.5 Interaction Synchronous Asynchronous
4.6 Interface Orientation Horizontal Vertical
4.7 Model Shared Model Self-Describing Messages
4.8 Granularity Fine Coarse
4.9 State Shared, Stateful Stateless
4.10 Evolution Breaking Compatible
4.11 Generated Code Static None/Dynamic
4.12 Conversation Explicit Reflective

Table 1: Coupling Facets Summary

between services that can be exploited for the purposes of
discovery. It is worth noting that the global UDDI business
registries were discontinued in January 2006. After 5 years
of operation they had accumulated less than 50’000 service
registrations (a small number when compared to the size
of the Web), showing that the “tightly coupled” assumption
of expecting all service providers to manually register them-
selves was not practical. However, UDDI continues to thrive
within the boundaries of the corporate firewall, showing that
a tightly coupled solution can work in a local environment.

Discovery also requires a common model (see Section 4.7),
because discovery implies that services (and registries) share
some model of what to discover, and how to discover it. For
example, keyword search (i.e., indexed phrases) is the largest
common denominator on the Web: it is a free text model.
It also is a weak model because it does not ensure that re-
sults actually match a given API, as shown, for example,
by the work on the Woogle free-text search engine for Web
services [8].

4.2 Identification
Identification (often also referred to as naming) is one of

the most important design considerations in order to connect
systems with the real world, and systems with systems. Sys-
tems usually perform tasks applied to objects found outside
of the systems themselves. Identification is about making
the association between the representations within the sys-
tems, and these external entities (and of course also for the
entities only existing within systems). The challenges re-
lated to identification include designing namespaces, assign-
ing identities, and providing identity-related services, such
as discovery lookups, bindings, or comparisons [21].

Tightly coupled approaches to identification mostly rely
on centralized services, where there is a single entity assign-
ing and managing identities. In that case, identity is mostly
tied to the context within which services are cooperating
with that central entity. As soon as identifiers are moved
outside of that context, services lose the ability to meaning-
fully handle these identifiers; they become opaque with no
clearly defined rules how to interpret and resolve them. Ide-
ally, identifiers in tightly coupled scenarios always should be
augmented with additional context information when they
leave the original context. In practice, however, this rarely
happens and the problem of resolving identifiers due to a
loss of context is a frequently occurring problem [38].

Loose coupling is based on an identity concept which does
not couple identification to context. In the context of REST,

identification is done using a Uniform Resource Identifier
(URI) [1]. URIs can use various identification schemes,
with the most frequently used one on the Web being the
http scheme. Services are free to use whatever identification
scheme they like, the important aspect being that agreeing
on URIs as the common way of identification makes it eas-
ier to use globally unique identifiers without relying on a
centralized authority. If applications insist on using opaque
local identifiers, these can be folded into URIs using the tag

scheme [22]. However, this would re-create the problem of
these URIs needing a proper context for interpretation that
is typical for tightly coupled identification.

4.3 Binding
Closely related to discovery and identification, binding

refers to the process of resolving symbolic names into iden-
tifiers used at a lower abstraction level. For example, a
DNS name can be bound to one of the corresponding IP
addresses using a DNS lookup (a form of discovery). In
service-oriented systems, binding can be applied in different
ways [30]. Abstract service interfaces referred to by clients
need to be bound to a concrete network endpoint and trans-
port protocol used by the service provider. Likewise, the
partner links of a BPEL process need to be bound to com-
patible WSDL port types.

A tightly coupled binding is one that is hard to change,
e.g., when it is resolved early, a long time before the re-
sult of the lookup is actually needed. Thus, compile-time or
deployment-time binding are considered to establish a tight
coupling between the bound entities, as it will not be possi-
ble to change the binding during the rest of the lifecycle of
the system.

Dynamic binding instead happens at run-time, and partic-
ularly at the latest possible time (e.g., right before a service
invocation). This is a form of loose coupling, because the
binding is established only when it becomes necessary. Per-
forming a lookup before every service invocation, however,
can impose a significant overhead and establishes a tight
coupling between the clients and the resolver. Not only the
resolver becomes a scalability bottleneck, but if the resolver
would become unavailable, all client lookups will fail and
clients will be unable to perform any service invocation.

4.4 Platform
Platform coupling concerns the requirements for all ser-

vices to be based on a homogeneous middleware infrastruc-
ture. If two services need to communicate, they must be



Service Client

Service API 
Implementation

Service 
Implementation

Horizontal Interface

Service Client Service 
Implementation

Vertical Interface Client-Side
Logic

Service Protocol
Logic

Service 
Implementation

Vertical Interface

1. Horizontal Interface 2. Vertical Interface (protocol used directly) 3. Vertical Interface (internal horizontal separation)

Figure 2: Interface Orientation

built using a compatible platform and programming lan-
guage. Interaction between services built using different,
heterogeneous platforms (e.g., CORBA, DCOM, .NET, J2EE)
is not easy to achieve, as complex and expensive bridging so-
lutions are required [28]. A service is thus tightly coupled
to a specific technology platform if this limits the possibility
of outsourcing the management of the service to an external
provider as well as the ability of clients built on a different
platform to use the service.

Standardization helps to decouple services thanks to the
interoperability it provides between different platforms. Thus,
the benefit of the Web services stack of standards is to enable
such interoperability and make the underlying technology
platform irrelevant when it comes to connecting services. In
this sense, loose coupling means that services that still need
to be deployed on a specific platform (by a specific vendor)
are nevertheless able to exchange messages with each other
no matter which middleware platform and programming lan-
guage is chosen.

4.5 Interaction
The interaction facet is about whether two services need

to be available at the same time in order to successfully
interact. Tight coupling is implied by synchronous interac-
tions, which require both parties to be available at the same
time in order to communicate. Loose coupling is typically
associated with asynchronous interactions, where a success-
ful interaction can happen even if one of the involved parties
is not available at the same time.

In service-oriented systems, the interaction facet of loose
coupling plays a major role in order to enable the communi-
cations of subsystems that are provided as a service by a dif-
ferent organization than the one consuming them. Thanks
to the properties of asynchronous message-based communi-
cations, it becomes possible to remove the time dependencies
between both ends of the communication.

For example, when it comes to performing maintenance
tasks on the services, as these do not always need to be
available to immediately handle client requests, the service
providers do not need to schedule outages taking into ac-
count the needs of their clients. On the other hand, a service
that is published using a synchronous communications pro-
tocol requires a bigger investment to avoid outages in the
provider infrastructure, as client request messages will be
lost if the service supposed to process them becomes (even
temporarily) unavailable.

HTTP is typically perceived as a synchronous communi-
cations protocol: when a Web server is not available, Web
browsers stop working. However, in more complex setups,
thanks to HTTP caches, proxies and reverse proxies, it be-
comes possible to service HTTP requests even if the main

back-end system is down. Also, the HTTP protocol can be
used to interact with non-blocking RESTful Web services,
which do not immediately respond to requests. Instead, to-
gether with a 202 (Accepted) status code, they provide a
URI from which to download the response at a later point in
time. However, as it can be seen from this example, this is
only a non-blocking synchronous interaction. The client does
not have to remain connected to the server while it waits for
a response, but when the request is sent, the server must be
available to receive it.

4.6 Interface Orientation
Interfaces to services can be designed with two alternative

orientations: horizontal or vertical. Horizontal interfaces (or
APIs) are local interfaces from a higher-level component to
a lower-level component. APIs for remote operations still
allow the higher-level component to only interact with a
local component (the API), since the component providing
the horizontal interface acts as a stub, hiding the distributed
nature of the interaction.

Vertical interfaces (or protocols) instead define the rules
that are necessary to communicate with a remote component
found on the same abstraction level. A protocol still needs a
communications mechanism which provides the foundation
on top of which the protocol is supposed be executed, but
the protocol itself provides a vertical separation between two
services.

Horizontal interfaces assume that there is a lower-level
component which provides the functionality, and this com-
ponent typically either sits on top of another horizontal in-
terface (as in a layered architectural style), or directly im-
plements a vertical interface. A typical example for this is
the well-known socket API, which provides a local library
for establishing inter-process communications.

Designing services based on horizontal interfaces mostly
results in tight coupling, because the component providing
the interface must be a more homogenous component, adher-
ing to both the horizontal interface it implements, and the
way in which the functionality is implemented, such as using
a protocol to communicate with a remote service provider
(Figure 2.1).2 Designing services based on vertical interfaces
typically results in loose coupling, because this approach is
based on the minimal set of definitions that are necessary to
interact — the protocol definition.

Vertical interfaces are better for heterogeneity, because
they do not make any assumption about how the local ab-

2As a historical footnote it is interesting to mention that
the Internet protocol stack only specifies vertical interfaces
(protocols), whereas the ISO/OSI protocol architecture [46],
the major Internet contender in the 80s, specified protocols
as well as standardized horizontal interfaces (APIs) for all
its layers.



straction (the horizontal interface between the protocol im-
plementation and the service user) is designed (Figure 2.2
shows the basic model, Figure 2.3 shows an internal sepa-
ration of the client-side code). Horizontal interfaces often
lead to homogenous environments, where all integrated ser-
vices depend on the same middleware APIs (which hide the
proprietary protocols). A typical example for a protocol
is TCP, which implements inter-process communications on
the Internet, and is the protocol most often used through
the socket API mentioned earlier. To communicate with a
peer over the Internet, only TCP is required; sockets are a
popular choice for using TCP, but are an entirely local issue.

4.7 Model
This facet is about whether the design assumes that there

is a common application-level data model that is shared
among services within a problem domain. If this is the
case, then messages are simply treated as a serialization of
that model, which is only used to transfer a model instance
from one service to the other through some communications
medium. This approach often uses generated code for mar-
shaling and unmarshaling, because the model instance in
essence is the shared information, and all services use the
same method for mapping models to the wire format.

This shared model design introduces tight coupling, be-
cause there is a strong conceptual connection between all
services sharing the same data model. This coupling often
is not only tight in principle, it also is tight in practice, be-
cause services are built with a particular method or tool for
marshaling and unmarshaling. Services wishing to use a dif-
ferent method or tool have a hard time doing so, because
the representation on the wire has not been designed for in-
teroperability and reuse in different contexts, but instead is
just a serialization of the shared model.

Loose coupling does not assume that there is a shared
model, instead messages being exchanged are self-contained
and are designed to be processed as documents in a stan-
dardized representation format. Thus messages can be pro-
cessed with any toolset for that format [43]. Loosely coupled
services can use a different internal model (adapted to their
local requirements) as long as they solve the problem of map-
ping the standard document format to their internal models.
While this additional step of mapping document structures
to an internal model might be regarded as overhead that is
not required in the tightly coupled scenario, it is essential
for loose coupling, because it allows cooperation between
services as long as there is a sufficient shared understanding
to define a mapping between the external canonical message
format and the internal models of each service.

4.8 Granularity
Granularity of services interfaces is about the design trade-

off between the number of interactions that are required to
provide certain functionality to service a large client com-
munity, and the complexity of the data parameters (or op-
eration signatures) to be exchanged within each interaction.
In API design, a typical goal is to minimize the number of
interactions [17]. In service design, this is even more so, due
to the high latency involved in a service invocation.

By using more coarse-grained interfaces (i.e., fewer inter-
actions required), services can exploit the extensibility of
well-designed message formats, and service evolution (Sec-
tion 4.10) can be based on message extensibility, rather than
an extension of the set of possible service interactions.

Fine-granular interfaces are tightly coupled because changes
in a service introduce or remove operations. The main ad-
vantage of fine-granular interfaces usually is efficiency, be-
cause it is possible to pick specific interactions having the
exact signature required by a subset of the clients, for which
the overhead of exchanging unnecessary data can be re-
duced.

4.9 State
Depending on the scale of a service landscape, state man-

agement can become one of the central problems in efficient
service design. Stateful services are based on the assumption
that a service keeps state of an ongoing interaction, leading
to problems for services with many clients, high throughput,
and long-running transactions. The alternative is to choose
a stateless service design, which keeps state in the messages
that are passed back and forth between cooperating services.

Loose coupling for state management means stateless ser-
vices. As an example, the acronym REST itself stands for
Representational State Transfer and highlights that state-
less interactions are one of the key properties of the Web.
Mechanisms for session management (e.g., cookies [24] or
URI rewriting) are nevertheless also available. However,
shared state (i.e., state that is kept by two or more inter-
acting services) always implies tight coupling, because there
must be associated mechanisms of establishing and recov-
ering stateful sessions, comparing states, resolving inconsis-
tencies, implementing time-out mechanisms, and performing
distributed garbage collection. The management overhead
of shared state is substantial, so it should only be employed
when required, i.e., to reduce the size of message payloads.

4.10 Evolution
This facet concerns how services can evolve over time,

and how that affects their clients. From the point of view
of the service provider, compatibility among versions can be
seen in two directions: Backward compatibility allows older
clients to keep functioning when using a service that has
been upgraded to a new version. Forward compatibility al-
lows newer clients to use an old version of a service, even
though they have been developed against a newer version
of the service. Evolution becomes particularly important in
connection with the discovery facet, because the compati-
bility of clients and services should be taken into account
during the lookup. Also, in case of late binding, run-time
errors may be produced if clients are bound to evolved (and
potentially incompatible) services.

Tight coupling for this facet is implied by an exact match
of versions, so that neither forward or backward compatibil-
ity are supported. A loosely coupled design instead attempts
to provide as much forward and backward compatibility as
possible, even if there are limits to how many changes an in-
terface can withstand without breaking clients. Loose cou-
pling therefore needs to combine rules about how to handle
differing version numbers, and what rules to apply in the
event of differing version numbers.3

3Interestingly, one of the core specifications of the Web,
XML itself, at the time of writing is undergoing a controver-
sial update. The proposed 5th edition of XML 1.0 [4] would
not change the version number of XML, but introduce new
features. This way, the loose coupling of XML-based services
would be compromised, because some documents conform-
ing to the 5th edition could not be processed using older
XML processors. It is still unclear whether the proposed



Common design patterns for this facet are mustUnder-

stand and mustIgnore, so that the service has a mechanism
to communicate to its clients how to deal with new proto-
col constructs. However, mustUnderstand also introduces
the risk of fragmentation, because older clients cannot use
services whose new features are flagged with mustUnder-

stand — this mechanism therefore has to be used with care.
mustIgnore, on the other hand, helps to provide a forward
compatible evolution path, as it refers to the convention of
ignoring unknown protocol elements (e.g., Web browsers do
not break if they encounter unknown HTML tags, which are
simply ignored).

Another important design aspect related to service evo-
lution are well-defined rules about extensibility. Extension
points of a service interface must be well thought out and
should be clearly marked, so that clients know where to ex-
pect changes and extensions. The patterns mentioned above
can then be used to learn what to do when such extensions
are encountered.

4.11 Generated Code
For sufficiently precise interface descriptions of models

(Section 4.7), it is possible to automatically generate code
for handling key communications functions. Code genera-
tion only works if the communication requirements are com-
pletely specified in machine-readable form, and if evolution
(see Section 4.10) of the system happens in well-defined,
predictable ways.

Code generation takes a service description and turns it
into code representing the service at the time the code was
generated. This produces tight coupling between the gen-
erated code and the description. If the description changes,
the code of the automatically generated stubs may no longer
work. Moreover, code generation introduces a dependency
on the corresponding run-time environment. Also if this
changes, the code may have to be regenerated.

A loosely coupled design does not use static code genera-
tion. Instead, it uses declarative mechanisms to model core
concepts of the system design (e.g., content types on the
Web), methods to communicate using these concepts (i.e.,
content negotiation), and then leaves it to the participating
systems to either hardcode assumptions about the system
environment, or to provide dynamic extension mechanisms.

For example, most Web browsers feature an extension
mechanism for MIME content types, because media types
appear at a faster rate than Web browsers are updated. On
the other hand, most Web browsers do not have a well-
designed extension mechanism for URI schemes, because
new schemes do not appear very often. So with respect
to the code generation facet, browsers provide a good foun-
dation for loose coupling on the media type level, but much
less so on the URI scheme level.

4.12 Conversation
Most service invocations span multiple basic interactions,

forming conversations. Services may provide functionality
that requires clients interacting with them to follow a certain
path, which prescribes to follow a set of partially ordered
message exchanges.

A tightly coupled design aims at augmenting the service
description with metadata constraining all possible interac-
tion sequences to the correct ones. Whereas this enables to

5th edition will be finalized in this form.

statically check that a client correctly interacts with a ser-
vice, it also restricts its future evolution, because the client
makes many assumptions on how to interact with the ser-
vice. Specification languages for orchestration such as the
Business Process Execution Language (BPEL) or choreog-
raphy such as the Web Services Choreography Description
Language (WS-CDL) can be used to augment service inter-
face contracts with a static description of possible correct
conversational interactions.

Enabling clients to discover at runtime how to correctly
interact with a service is a loosely coupled design practice
for enforcing guarantees about the conversation. This can
be achieved with a reflective inspection mechanism, enabling
clients during the invocation of a service, to inquire with the
service itself about what are the possible future steps of the
interaction, and to dynamically pick among them the next
interaction.

This approach is followed by RESTful Web services, which
use hyperlinks as the mechanism to steer clients participat-
ing in loosely coupled conversations. In a very simple sce-
nario, a RESTful multistage process for filling out forms on
the Web controls the conversation by replying to each form
submission with a new form and a URI where to submit that
new form. Clients can correctly follow this long interaction
without any prior knowledge of the corresponding process.
Also, no description of how the process is designed must be
provided in advance by the service. By simply inspecting the
representations of the service’s resources, clients are able to
follow the required conversation pattern of the service. Hy-
perlinks thus create the ties which hold together the various
resource URIs which are accessed while interacting with the
service. Since these ties are established at run-time, no tight
coupling is established between services.

5. EVALUATION
In this section we aim at moving from a qualitative de-

scription of these facets to a quantitative evaluation, ad-
dressing the problem of how to use the twelve facets to
analyze the properties of three representative Web services
technologies: RESTful HTTP, RPC over HTTP, and WS-*
based messaging on a so-called enterprise service bus (ESB [6]).
A similar analysis can be conducted over the design of con-
crete service-oriented systems.

Table 2 and Figure 3 summarize our findings, listing for
each technology the corresponding coupling characteristics
and visualizing the implied degree of coupling. For all tech-
nologies we immediately see that all are operating system
and programming language independent, making them loosely
coupled according to the Platform facet. Whereas this was
not necessarily true for traditional vendor-specific middle-
ware platforms, thanks to the WS-* standardization efforts
and the pervasive support for the HTTP protocol, nowa-
days loose coupling in terms of platform independence can
be safely assumed for all Web services technologies.

In the first two columns we compare a RESTful usage of
the HTTP protocol against its use for implementing Remote
Procedure Calls (RPC) across the Web. This is an impor-
tant comparison, as it helps to highlight the differences be-
tween true RESTful Web service APIs, and RPC-based Web
services provided using, for example, SOAP over HTTP, or
XML-RPC. Concerning the discovery (Decentralized), iden-
tification (Global), and binding (Dynamic) facets, we do not
observe any difference due to the properties of the HTTP



WS-*/ESB

RPC over HTTP

RESTful HTTP

Degree of Coupling

Loose Coupling

Coupling Facet

Tight Coupling

Design-Specific Coupling

Discovery

Identification

Binding

Platform

Interaction

Interface
Orientation Interface

Orientation

Interface
Orientation

Model

Granularity

State

Evolution

Generated
Code

Generated
Code

Generated
Code

Conversation

Discovery

Identification

Binding

Platform

Interaction

Model

Granularity

State

Evolution

Conversation

Discovery

Identification

Binding

Platform

Interaction

Model

Granularity

State

Evolution

Conversation

(a) RESTful HTTP (b) RPC over HTTP (c) WS-*/ESB

Figure 3: Measuring the degree of coupling implied by different Web services technologies

RESTful HTTP RPC over HTTP WS-*/ESB

4.1 Discovery Referral Referral Registration
4.2 Identification Global Global Context-based
4.3 Binding Late Early/Late Late
4.4 Platform Independent Independent Independent
4.5 Interaction Asynchronous Synchronous Asynchronous
4.6 Interface Orientation Vertical Horizontal Horizontal
4.7 Model Self-Describing Messages Shared Model Self-D. Messages/Shared Model
4.8 Granularity Fine/Coarse Fine/Coarse Fine/Coarse
4.9 State Stateless Stateless/Shared, Stateful Stateless
4.10 Evolution Compatible/Breaking Compatible/Breaking Compatible/Breaking
4.11 Generated Code None/Dynamic Static Static
4.12 Conversation Reflective Explicit Explicit

Table 2: Web Services Technology Evaluation Summary

protocol. However, when it comes to the interaction facet,
some differences become apparent. RPC interactions are by
definition synchronous. RESTful interactions are instead
asynchronous, since services interact indirectly by updating
(with POST, PUT, or DELETE) the state of resources, which
can be later accessed by other services (with GET) [33]. Inter-
face orientation is vertical in REST, which only relies on the
protocol and resource representations, whereas RPC is often
based on the stub mechanism where the client of a remote
service accessed via RPC calls a local interface which then
handles the fact that the service is implemented remotely.
The two technologies also differ in terms of the model facet,
where RPC follows a shared model approach, where all ser-
vices must agree beforehand on the syntax and the semantics
of the exchanged messages, while REST promotes a “Self-
Describing Representations” solution. RESTful interactions
are also stateless, while RPC offers both options, as interact-
ing services may establish a session by sharing state among
them, but also may be designed to avoid such tight cou-
pling. RPC is also based on generated code stubs, while
REST does not require them as it follows a more dynamic
approach based on plugin extensibility. Also regarding con-
versations, REST promotes a dynamic, reflective approach,

while RPC-based Web services make the interaction con-
straints explicit at design-time.

It is worth noting that not all the facets are bound by
the properties of a given technology. For example, the gran-
ularity, state, and evolution facets depend on the concrete
design choice of a given service-oriented system architecture,
and are not constrained by the choice of the REST vs. RPC
styles. In other words, it is possible to design tightly cou-
pled RESTful Web services, which can be “chatty” in their
interactions, if their interfaces expose a large number of fine-
grained resources. The same can be said about RPC-based
services, which can either publish many fine-grained opera-
tions, or a few coarse-grained ones, depending on the cho-
sen design strategy. Also in terms of the evolution facet, a
service design needs to be evaluated at a more specific level.
For example, XML technology can support a loosely coupled
evolution facet only if it is used with additional guidelines
for versioning and the enforcement of mustUnderstand rules.

We have chosen to include in our evaluation the WS-*/ESB
technology (which is not Web/HTTP centric), because the
enterprise service bus family of middleware products is widely
perceived to be the foundation for loosely coupled SOA im-
plementations. Thus, it is interesting to apply our multi-



faceted definition also to measure the coupling implied by
this technology. We observe that ESB provides loose cou-
pling according to four facets: binding (Dynamic), interac-
tion (Asynchronous), state (Stateless) and platform (Inde-
pendent). However, the technology uses context-based iden-
tification (a tightly coupled solution) and requires central-
ized service registration to support service discovery. Also,
interactions based on multiple message exchanges are explic-
itly modeled using workflow and conversation models. The
development process of services connected by an ESB relies
on code generation techniques (thus, an ESB presents an
horizontal interface orientation). Therefore, according to all
of these other five facets, this kind of middleware technology
does not help to achieve loose coupling. Similar to the other
two alternatives, the choice of using an ESB does not con-
strain the evolution and granularity facets. Additionally, it
is also possible to choose between a shared model design, or
to leverage the ESB mediation capabilities to foster a more
loosely coupled design based on self-describing messages.

In more quantitative terms, the table counts the number
of facets for which a technology results in loose or tight cou-
pling. We also distinguish facets for which the degree of
coupling does not depend on the chosen technology but may
vary depending on more specific design decisions.

Coupling REST RPC WS-*/ESB

Loose 10 3 4
Tight 0 4 5
Design-Specific 2 5 3

Only in the best case (assuming that all design-specific
facets follow loosely coupled options) we can conclude that
using RESTful HTTP would provide a system architecture
featuring loose coupling according to all facets. Choosing
RPC over HTTP, instead, would not result in a completely
loosely coupled system, due to the 4 facets (interaction,
model, generated code, and conversation) which only present
a tightly coupled approach. This alternative also requires

Discovery

Identification

Binding

Platform

Interaction

Model

Granularity

State

Evolution

Conversation

Interface
Orientation

Generated
Code

WS-*/ESBRPC over HTTPRESTful HTTP

Figure 4: Comparing the degree of coupling implied
by different Web services technologies

more effort to achieve a loosely coupled system, as up to
5 facets are design-specific and are unconstrained by the
technology choice. This number is smaller in case of the
WS-*/ESB alternative, where only 3 facets are design-specific.
A more detailed, facet-by-facet comparison is visualized with
the radar chart of Figure 4. It is interesting to notice that the
curve indicating the degree of coupling implied by RESTful
HTTP is strictly bounded by both of the other curves. If we
do not consider the discovery and identification facets, the
same holds between the RPC and the ESB curves. Thus, our
multi-faceted metric can be used to establish a partial or-
dering between different Web services technologies in terms
of their degree of coupling.

6. CONCLUSIONS
SOAP-based Web services and the REST architectural

style have been and still are the topic of many debates.
Many of these debates are heated, often missing the point
that the more prescriptive style of the SOAP approach and
the more descriptive style of the REST approach have their
roots in different scenarios, the former assuming closed worlds
and contractual relationships, whereas the latter caters to
an open world with ad-hoc interactions [40]. So far, only
few attempts have been made to compare both approaches
as objectively as possible [31]. “Loose coupling” and “tight
coupling” are frequently used terms in such debates, given
the positive connotation of the former and the negative im-
plications of the latter. Reduced coupling is beneficial be-
cause interdependencies typically make complex IT applica-
tion systems brittle and slow to adapt to changes [32].

In terms of the goals which should be accomplished when
designing service systems, WS-* and REST can be described
by integration vs. cooperation (Fiedler et al. [11] make a sim-
ilar distinction for database systems). Both goals (as well
as “loose” and ‘tight” coupling) are not good or bad per-se.
They are the result of a strategic decision on how to de-
sign and implement IT architectures, and there can be valid
business objectives for both of these goals. These business
objectives should be the input for a decision how to design
a system, for example putting a higher emphasis of perfor-
mance optimization (usually easier with tight coupling) or
agility (usually easier with loose coupling).

The twelve facets described in this paper make it easier to
understand which approach is more appropriate for a given
problem, and for which facet of the system design a loose
or tight coupling approach should be preferred. In the end,
as we have shown in our evaluation, very few systems are
loosely or tightly coupled according to all facets. Instead,
they use a mix of both depending on the business objectives
and the constraints of the chosen Web technologies. Our
multi-faceted metric thus also defines a set of choices that
need to be made, giving system designers a more structured
approach for making better design decisions and comparing
alternative Web services technology options.

Acknowledgements
The authors would like to thank Domenico Bianculli for his
constructive feedback. This work is partially supported by
the EU-IST-FP7-215605 (RESERVOIR) project.

7. REFERENCES
[1] Tim Berners-Lee, Roy Thomas Fielding, and Larry

Masinter. Uniform Resource Identifier (URI): Generic
Syntax. Internet RFC 3986, January 2005.



[2] Andrew Birrell and Bruce Jay Nelson. Implementing
Remote Procedure Calls. ACM Transactions on Computer
Systems (TOCS), 2:39–59, February 1984.

[3] Jason Bloomberg and Ronald Schmelzer, editors.
Service Orient or Be Doomed! John Wiley & Sons, New
York, NY, March 2006.

[4] Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen,
Eve Maler, and François Yergeau. Extensible Markup
Language (XML) 1.0 (Fifth Edition). World Wide Web
Consortium, Recommendation REC-xml-20081126,
November 2008.

[5] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst.
A Unified Framework for Coupling Measurement in
Object-Oriented Systems. IEEE Transactions on Software
Engineering, 25(1):91–121, January 1999.

[6] David Chappell. Enterprise Service Bus. O’Reilly, 2004.
[7] Luc Clement, Andrew Hately, Claus von Riegen, and

Tony Rogers. UDDI Version 3.0.2. Organization for the
Advancement of Structured Information Standards, UDDI
Spec Technical Committee Draft, October 2004.

[8] Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema
Nemes, and Jun Zhang. Similarity Search for Web
Services. In Proceedings of the 30th International
Conference on Very Large Data Bases, pages 372–383,
Toronto, Canada, September 2004.

[9] Thomas Erl. Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall, 2005.

[10] Patrick Th. Eugster, Pascal A. Felber, Rachid
Guerraoui, and Anne-Marie Kermarrec. The many
faces of publish/subscribe. ACM Computing Surveys,
35(2):114–131, 2003.

[11] Gunar Fiedler, Thomas Raak, and Bernhard
Thalheim. Database Collaboration Instead of Integration.
In Sven Hartmann and Markus Stumptner, editors,
Proceedings of the 2nd Asia-Pacific Conference on
Conceptual Modelling, pages 49–58, Newcastle, Australia,
January 2005.

[12] Roy Thomas Fielding. Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California, Irvine, Irvine, California, 2000.

[13] Roy Thomas Fielding, Jim Gettys, Jeffrey C. Mogul,
Henrik Frystyk Nielsen, Larry Masinter, Paul J.
Leach, and Tim Berners-Lee. Hypertext Transfer
Protocol — HTTP/1.1. Internet RFC 2616, June 1999.

[14] Roy Thomas Fielding and Richard N. Taylor.
Principled Design of the Modern Web Architecture. ACM
Transactions on Internet Technology, 2(2):115–150, May
2002.

[15] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering. Prentice Hall, 2003.

[16] Joe Gregorio. URI Template. Internet Draft
draft-gregorio-uritemplate-03, March 2008.

[17] Michi Henning. API Design Matters. ACM Queue,
5(4):24–36, May 2007.

[18] Gregor Hohpe. Enterprise Integration Patterns.
Addison-Wesley, October 2003.

[19] Nicolai M. Josuttis. SOA In Practice. O’Reilly, August
2007.

[20] Doug Kaye. Loosely Coupled: The Missing Pieces of Web
Services. RDS Press, August 2003.

[21] Tim Kindberg. Ubiquitous and contextual identifier
resolution for the real-world wide web. Technical Report 95,
HP Labs, 2001.

[22] Tim Kindberg and Sandro Hawke. The ’tag’ URI
Scheme. Internet RFC 4151, October 2005.

[23] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise
SOA: Service-Oriented Architecture Best Practices (The
Coad Series). Prentice Hall, 2004.

[24] David M. Kristol and Lou Montulli. HTTP State
Management Mechanism. Internet RFC 2965, October
2000.

[25] Michele Lanza and Radu Marinescu. Object-Oriented
Metrics in Practice. Springer, 2006.

[26] G. J. Myers. Composite/Structured Design. Van Nostrand
Reinhold, 1978.

[27] Eric Newcomer and Greg Lomow. Understanding SOA
with Web services. Addison-Wesley, 2005.

[28] Johann Oberleitner, Thomas Gschwind, and Mehdi
Jazayeri. The Vienna Component Framework enabling
composition across component models. In ICSE ’03: Proc.
of the 25th International Conference on Software
Engineering, pages 25–35, 2003.

[29] J. Douglas Orton and Karl E. Weick. Loosely Coupled
Systems: A Reconceptualization. Academy of Management
Review, 15(2):203–223, April 1990.

[30] Cesare Pautasso and Gustavo Alonso. Flexible Binding
for Reusable Composition of Web Services. In Proc. of the
4th Workshop on Software Composition (SC 2005),
Edinburgh, Scotland, April 2005.

[31] Cesare Pautasso, Olaf Zimmermann, and Frank
Leymann. RESTful Web Services vs. ”Big” Web Services:
Making the Right Architectural Decision. In Proceedings of
the 17th International World Wide Web Conference, pages
805–814, Beijing, China, April 2008. ACM Press.

[32] Cynthia Rettig. The Trouble with Enterprise Software.
MIT Sloan Management Review, 49(1):21–27, 2007.

[33] Leonard Richardson and Sam Ruby. RESTful Web
Services. O’Reilly, May 2007.

[34] Jos A. Rijpma. Complexity, Tight-Coupling and
Reliability: Connecting Normal Accidents Theory and High
Reliability Theory. Journal of Contingencies and Crisis
Management, 5(1), March 1997.

[35] Wayne P. Stevens, Glenford J. Myers, and Larry L.
Constantine. Structured Design. IBM Systems Journal,
13(2):115–139, 1974.

[36] Andrew S. Tanenbaum. Distributed Operating Systems.
Prentice-Hall, Englewood Cliffs, New Jersey, September
1994.

[37] James D. Thompson. Organizations in Action: Social
Science Bases of Administrative Theory. McGraw-Hill,
New York, NY, June 1967.

[38] Manolis Tzagarakis, Nikos Karousos, Dimitris
Christodoulakis, and Siegfried Reich. Naming as a
Fundamental Concept of Open Hypermedia Systems. In
Proceedings of the 11th ACM Conference on Hypertext and
Hypermedia, pages 103–112, San Antonio, Texas, May
2000. ACM Press.

[39] Steve Vinoski. Old Measures for New Services. IEEE
Internet Computing, 9(6):72–74, November 2005.

[40] Steve Vinoski. Serendipitous Reuse. IEEE Internet
Computing, 12(1):84–87, January 2008.

[41] Sanjiva Weerawarana, Francisco Curbera, Frank
Leymann, Tony Storey, and Donald Ferguson. Web
Services Platform Architecture. Prentice Hall, March 2005.

[42] Karl E. Weick. Educational Organizations as Loosely
Coupled Systems. Administrative Science Quarterly,
21(1):1–19, March 1976.

[43] Erik Wilde and Robert J. Glushko. Document Design
Matters. Communications of the ACM, 51(10):43–49,
October 2008.

[44] Dan Woods and Thomas Mattern. Enterprise SOA:
Designing IT for Business Innovation. O’Reilly, 2006.

[45] E. Yourdon and L. Constantine. Structural Design.
Prentice Hall, 1979.

[46] Hubert Zimmermann. OSI Reference Model — The ISO
Model of Architecture for Open Systems Interconnection.
IEEE Transactions on Communications, 28(4):425–432,
April 1980.

[47] Olaf Zimmermann, Mark Tomlinson, and Stefan
Peuser. Perspectives on Web Services: Applying SOAP,
WSDL, and UDDI to Real-World Projects. Springer,
September 2003.


	Introduction
	Related Work
	Origins
	Coupling Facets
	Discovery
	Identification
	Binding
	Platform
	Interaction
	Interface Orientation
	Model
	Granularity
	State
	Evolution
	Generated Code
	Conversation

	Evaluation
	Conclusions
	References

